메뉴 건너뛰기




Volumn 48, Issue 8, 2011, Pages 823-830

The contribution of the S-phase checkpoint genes MEC1 and SGS1 to genome stability maintenance in Candida albicans

Author keywords

Antifungal drug resistance; Cell cycle checkpoint; Genome stability; MEC1; SGS1

Indexed keywords

FLUCONAZOLE;

EID: 79959551389     PISSN: 10871845     EISSN: 10960937     Source Type: Journal    
DOI: 10.1016/j.fgb.2011.04.005     Document Type: Article
Times cited : (25)

References (52)
  • 1
    • 79952376739 scopus 로고    scopus 로고
    • Rad52 function prevents chromosome loss and truncation in Candida albicans
    • Andaluz E., et al. Rad52 function prevents chromosome loss and truncation in Candida albicans. Mol. Microbiol. 2011, 79:1462-1482.
    • (2011) Mol. Microbiol. , vol.79 , pp. 1462-1482
    • Andaluz, E.1
  • 2
    • 33645066107 scopus 로고    scopus 로고
    • Rad52 depletion in Candida albicans triggers both the DNA-damage checkpoint and filamentation accompanied by but independent of expression of hypha-specific genes
    • Andaluz E., et al. Rad52 depletion in Candida albicans triggers both the DNA-damage checkpoint and filamentation accompanied by but independent of expression of hypha-specific genes. Mol. Microbiol. 2006, 59:1452-1472.
    • (2006) Mol. Microbiol. , vol.59 , pp. 1452-1472
    • Andaluz, E.1
  • 3
    • 0345276624 scopus 로고    scopus 로고
    • Regulation of alternative replication bypass pathways at stalled replication forks and its effects on genome stability: a yeast model
    • Barbour L., Xiao W. Regulation of alternative replication bypass pathways at stalled replication forks and its effects on genome stability: a yeast model. Mutat. Res. 2003, 532:137-155.
    • (2003) Mutat. Res. , vol.532 , pp. 137-155
    • Barbour, L.1    Xiao, W.2
  • 4
    • 68249122027 scopus 로고    scopus 로고
    • The checkpoint response to replication stress
    • Branzei D., Foiani M. The checkpoint response to replication stress. DNA Repair 2009, 8:1038-1046.
    • (2009) DNA Repair , vol.8 , pp. 1038-1046
    • Branzei, D.1    Foiani, M.2
  • 5
    • 77649165394 scopus 로고    scopus 로고
    • Maintaining genome stability at the replication fork. Nature reviews
    • Branzei D., Foiani M. Maintaining genome stability at the replication fork. Nature reviews. Mol. Cell. Biol. 2010, 11:208-219.
    • (2010) Mol. Cell. Biol. , vol.11 , pp. 208-219
    • Branzei, D.1    Foiani, M.2
  • 6
    • 4344636192 scopus 로고    scopus 로고
    • Homologous recombination in Candida albicans: role of CaRad52p in DNA repair, integration of linear DNA fragments and telomere length
    • Ciudad T., et al. Homologous recombination in Candida albicans: role of CaRad52p in DNA repair, integration of linear DNA fragments and telomere length. Mol. Microbiol. 2004, 53:1177-1194.
    • (2004) Mol. Microbiol. , vol.53 , pp. 1177-1194
    • Ciudad, T.1
  • 7
    • 0032530824 scopus 로고    scopus 로고
    • Recovery from DNA replicational stress is the essential function of the S-phase checkpoint pathway
    • Desany B.A., et al. Recovery from DNA replicational stress is the essential function of the S-phase checkpoint pathway. Genes Dev. 1998, 12:2956-2970.
    • (1998) Genes Dev. , vol.12 , pp. 2956-2970
    • Desany, B.A.1
  • 8
    • 18844407538 scopus 로고    scopus 로고
    • Mechanisms of haploinsufficiency revealed by genome-wide profiling in yeast
    • Deutschbauer A.M., et al. Mechanisms of haploinsufficiency revealed by genome-wide profiling in yeast. Genetics 2005, 169:1915-1925.
    • (2005) Genetics , vol.169 , pp. 1915-1925
    • Deutschbauer, A.M.1
  • 9
    • 0029808466 scopus 로고    scopus 로고
    • Cell cycle checkpoints: preventing an identity crisis
    • Elledge S.J. Cell cycle checkpoints: preventing an identity crisis. Science 1996, 274:1664-1672.
    • (1996) Science , vol.274 , pp. 1664-1672
    • Elledge, S.J.1
  • 10
    • 0028785586 scopus 로고
    • The Bloom's syndrome gene product is homologous to RecQ helicases
    • Ellis N.A., et al. The Bloom's syndrome gene product is homologous to RecQ helicases. Cell 1995, 83:655-666.
    • (1995) Cell , vol.83 , pp. 655-666
    • Ellis, N.A.1
  • 11
    • 33845337082 scopus 로고    scopus 로고
    • Checkpoint proteins control morphogenetic events during DNA replication stress in Saccharomyces cerevisiae
    • Enserink J.M., et al. Checkpoint proteins control morphogenetic events during DNA replication stress in Saccharomyces cerevisiae. J. Cell Biol. 2006, 175:729-741.
    • (2006) J. Cell Biol. , vol.175 , pp. 729-741
    • Enserink, J.M.1
  • 12
    • 0037168658 scopus 로고    scopus 로고
    • Alternate pathways involving Sgs1/Top3, Mus81/Mms4, and Srs2 prevent formation of toxic recombination intermediates from single-stranded gaps created by DNA replication
    • Fabre F., et al. Alternate pathways involving Sgs1/Top3, Mus81/Mms4, and Srs2 prevent formation of toxic recombination intermediates from single-stranded gaps created by DNA replication. Proc. Natl. Acad. Sci. USA 2002, 99:16887-16892.
    • (2002) Proc. Natl. Acad. Sci. USA , vol.99 , pp. 16887-16892
    • Fabre, F.1
  • 13
    • 0034733495 scopus 로고    scopus 로고
    • DNA damage checkpoints and DNA replication controls in Saccharomyces cerevisiae
    • Foiani M., et al. DNA damage checkpoints and DNA replication controls in Saccharomyces cerevisiae. Mutat. Res. 2000, 451:187-196.
    • (2000) Mutat. Res. , vol.451 , pp. 187-196
    • Foiani, M.1
  • 14
    • 0033957793 scopus 로고    scopus 로고
    • The yeast Sgs1p helicase acts upstream of Rad53p in the DNA replication checkpoint and colocalizes with Rad53p in S-phase-specific foci
    • Frei C., Gasser S.M. The yeast Sgs1p helicase acts upstream of Rad53p in the DNA replication checkpoint and colocalizes with Rad53p in S-phase-specific foci. Genes Dev. 2000, 14:81-96.
    • (2000) Genes Dev. , vol.14 , pp. 81-96
    • Frei, C.1    Gasser, S.M.2
  • 15
    • 0028033989 scopus 로고
    • The yeast type I topoisomerase Top3 interacts with Sgs1, a DNA helicase homolog: a potential eukaryotic reverse gyrase
    • Gangloff S., et al. The yeast type I topoisomerase Top3 interacts with Sgs1, a DNA helicase homolog: a potential eukaryotic reverse gyrase. Mol. Cell. Biol. 1994, 14:8391-8398.
    • (1994) Mol. Cell. Biol. , vol.14 , pp. 8391-8398
    • Gangloff, S.1
  • 16
    • 0034119866 scopus 로고    scopus 로고
    • Homologous recombination is responsible for cell death in the absence of the Sgs1 and Srs2 helicases
    • Gangloff S., et al. Homologous recombination is responsible for cell death in the absence of the Sgs1 and Srs2 helicases. Nat. Genet. 2000, 25:192-194.
    • (2000) Nat. Genet. , vol.25 , pp. 192-194
    • Gangloff, S.1
  • 17
    • 0037173615 scopus 로고    scopus 로고
    • Functional profiling of the Saccharomyces cerevisiae genome
    • Giaever G., et al. Functional profiling of the Saccharomyces cerevisiae genome. Nature 2002, 418:387-391.
    • (2002) Nature , vol.418 , pp. 387-391
    • Giaever, G.1
  • 18
    • 0032483576 scopus 로고    scopus 로고
    • The DNA replication and damage checkpoint pathways induce transcription by inhibition of the Crt1 repressor
    • Huang M., et al. The DNA replication and damage checkpoint pathways induce transcription by inhibition of the Crt1 repressor. Cell 1998, 94:595-605.
    • (1998) Cell , vol.94 , pp. 595-605
    • Huang, M.1
  • 19
    • 0032574776 scopus 로고    scopus 로고
    • Monosomy of a specific chromosome determines l-sorbose utilization: a novel regulatory mechanism in Candida albicans
    • Janbon G., et al. Monosomy of a specific chromosome determines l-sorbose utilization: a novel regulatory mechanism in Candida albicans. Proc. Natl. Acad. Sci. USA 1998, 95:5150-5155.
    • (1998) Proc. Natl. Acad. Sci. USA , vol.95 , pp. 5150-5155
    • Janbon, G.1
  • 20
    • 0027971222 scopus 로고
    • An essential gene, ESR1, is required for mitotic cell growth, DNA repair and meiotic recombination in Saccharomyces cerevisiae
    • Kato R., Ogawa H. An essential gene, ESR1, is required for mitotic cell growth, DNA repair and meiotic recombination in Saccharomyces cerevisiae. Nucl. Acids Res. 1994, 22:3104-3112.
    • (1994) Nucl. Acids Res. , vol.22 , pp. 3104-3112
    • Kato, R.1    Ogawa, H.2
  • 21
    • 0034857146 scopus 로고    scopus 로고
    • Meiotic recombination involving heterozygous large insertions in Saccharomyces cerevisiae: formation and repair of large, unpaired DNA loops
    • Kearney H.M., et al. Meiotic recombination involving heterozygous large insertions in Saccharomyces cerevisiae: formation and repair of large, unpaired DNA loops. Genetics 2001, 158:1457-1476.
    • (2001) Genetics , vol.158 , pp. 1457-1476
    • Kearney, H.M.1
  • 22
    • 0345293222 scopus 로고    scopus 로고
    • MEC1-dependent phosphorylation of yeast RPA1 in vitro
    • Kim H.S., Brill S.J. MEC1-dependent phosphorylation of yeast RPA1 in vitro. DNA Repair 2003, 2:1321-1335.
    • (2003) DNA Repair , vol.2 , pp. 1321-1335
    • Kim, H.S.1    Brill, S.J.2
  • 23
    • 0032939991 scopus 로고    scopus 로고
    • Mutations in RECQL4 cause a subset of cases of Rothmund-Thomson syndrome
    • Kitao S., et al. Mutations in RECQL4 cause a subset of cases of Rothmund-Thomson syndrome. Nat. Genet. 1999, 22:82-84.
    • (1999) Nat. Genet. , vol.22 , pp. 82-84
    • Kitao, S.1
  • 24
    • 37549057681 scopus 로고    scopus 로고
    • Role of DNA mismatch repair and double-strand break repair in genome stability and antifungal drug resistance in Candida albicans
    • Legrand M., et al. Role of DNA mismatch repair and double-strand break repair in genome stability and antifungal drug resistance in Candida albicans. Eukaryot. Cell 2007, 6:2194-2205.
    • (2007) Eukaryot. Cell , vol.6 , pp. 2194-2205
    • Legrand, M.1
  • 25
    • 51149106746 scopus 로고    scopus 로고
    • Analysis of base excision and nucleotide excision repair in Candida albicans
    • Legrand M., et al. Analysis of base excision and nucleotide excision repair in Candida albicans. Microbiology 2008, 154:2446-2456.
    • (2008) Microbiology , vol.154 , pp. 2446-2456
    • Legrand, M.1
  • 26
    • 2942598771 scopus 로고    scopus 로고
    • Homozygosity at the MTL locus in clinical strains of Candida albicans: karyotypic rearrangements and tetraploid formation
    • Legrand M., et al. Homozygosity at the MTL locus in clinical strains of Candida albicans: karyotypic rearrangements and tetraploid formation. Mol. Microbiol. 2004, 52:1451-1462.
    • (2004) Mol. Microbiol. , vol.52 , pp. 1451-1462
    • Legrand, M.1
  • 27
    • 0344413642 scopus 로고    scopus 로고
    • The S-phase checkpoint and its regulation in Saccharomyces cerevisiae
    • Longhese M.P., et al. The S-phase checkpoint and its regulation in Saccharomyces cerevisiae. Mutat. Res. 2003, 532:41-58.
    • (2003) Mutat. Res. , vol.532 , pp. 41-58
    • Longhese, M.P.1
  • 28
    • 0029827768 scopus 로고    scopus 로고
    • Human homologues of yeast helicase
    • Lu J., et al. Human homologues of yeast helicase. Nature 1996, 383:678-679.
    • (1996) Nature , vol.383 , pp. 678-679
    • Lu, J.1
  • 29
    • 0034647921 scopus 로고    scopus 로고
    • Induction of mating in Candida albicans by construction of MTLa and MTLalpha strains
    • Magee B.B., Magee P.T. Induction of mating in Candida albicans by construction of MTLa and MTLalpha strains. Science 2000, 289:310-313.
    • (2000) Science , vol.289 , pp. 310-313
    • Magee, B.B.1    Magee, P.T.2
  • 30
    • 0027142482 scopus 로고
    • Variations in chromosome size and organization in Candida albicans and Candida stellatoidea
    • Magee P.T. Variations in chromosome size and organization in Candida albicans and Candida stellatoidea. Trends Microbiol. 1993, 1:338-342.
    • (1993) Trends Microbiol. , vol.1 , pp. 338-342
    • Magee, P.T.1
  • 31
    • 0026706331 scopus 로고
    • Comparison of molecular typing methods for Candida albicans
    • Magee P.T., et al. Comparison of molecular typing methods for Candida albicans. J. Clin. Microbiol. 1992, 30:2674-2679.
    • (1992) J. Clin. Microbiol. , vol.30 , pp. 2674-2679
    • Magee, P.T.1
  • 32
    • 33744469619 scopus 로고    scopus 로고
    • Regulation of hyphal morphogenesis and the DNA damage response by the Aspergillus nidulans ATM homolog AtmA
    • Malavazi I., et al. Regulation of hyphal morphogenesis and the DNA damage response by the Aspergillus nidulans ATM homolog AtmA. Genetics 2006, 173:99-109.
    • (2006) Genetics , vol.173 , pp. 99-109
    • Malavazi, I.1
  • 33
    • 36249015877 scopus 로고    scopus 로고
    • The RecQ helicase-topoisomerase III-Rmi1 complex: a DNA structure-specific 'dissolvasome'?
    • Mankouri H.W., Hickson I.D. The RecQ helicase-topoisomerase III-Rmi1 complex: a DNA structure-specific 'dissolvasome'?. Trends Biochem. Sci. 2007, 32:538-546.
    • (2007) Trends Biochem. Sci. , vol.32 , pp. 538-546
    • Mankouri, H.W.1    Hickson, I.D.2
  • 34
    • 0033843061 scopus 로고    scopus 로고
    • Sgs1 helicase activity is required for mitotic but apparently not for meiotic functions
    • Miyajima A., et al. Sgs1 helicase activity is required for mitotic but apparently not for meiotic functions. Mol. Cell. Biol. 2000, 20:6399-6409.
    • (2000) Mol. Cell. Biol. , vol.20 , pp. 6399-6409
    • Miyajima, A.1
  • 35
    • 0035830498 scopus 로고    scopus 로고
    • Suppression of spontaneous chromosomal rearrangements by S phase checkpoint functions in Saccharomyces cerevisiae
    • Myung K., et al. Suppression of spontaneous chromosomal rearrangements by S phase checkpoint functions in Saccharomyces cerevisiae. Cell 2001, 104:397-408.
    • (2001) Cell , vol.104 , pp. 397-408
    • Myung, K.1
  • 36
    • 0037007074 scopus 로고    scopus 로고
    • Suppression of genome instability by redundant S-phase checkpoint pathways in Saccharomyces cerevisiae
    • Myung K., Kolodner R.D. Suppression of genome instability by redundant S-phase checkpoint pathways in Saccharomyces cerevisiae. Proc. Natl. Acad. Sci. USA 2002, 99:4500-4507.
    • (2002) Proc. Natl. Acad. Sci. USA , vol.99 , pp. 4500-4507
    • Myung, K.1    Kolodner, R.D.2
  • 37
    • 13844316993 scopus 로고    scopus 로고
    • Strains and strategies for large-scale gene deletion studies of the diploid human fungal pathogen Candida albicans
    • Noble S.M., Johnson A.D. Strains and strategies for large-scale gene deletion studies of the diploid human fungal pathogen Candida albicans. Eukaryot. Cell 2005, 4:298-309.
    • (2005) Eukaryot. Cell , vol.4 , pp. 298-309
    • Noble, S.M.1    Johnson, A.D.2
  • 38
    • 0034724751 scopus 로고    scopus 로고
    • Elevation of sister chromatid exchange in Saccharomyces cerevisiae sgs1 disruptants and the relevance of the disruptants as a system to evaluate mutations in Bloom's syndrome gene
    • Onoda F., et al. Elevation of sister chromatid exchange in Saccharomyces cerevisiae sgs1 disruptants and the relevance of the disruptants as a system to evaluate mutations in Bloom's syndrome gene. Mutat. Res. 2000, 459:203-209.
    • (2000) Mutat. Res. , vol.459 , pp. 203-209
    • Onoda, F.1
  • 39
    • 0035019655 scopus 로고    scopus 로고
    • Characterization of mec1 kinase-deficient mutants and of new hypomorphic mec1 alleles impairing subsets of the DNA damage response pathway
    • Paciotti V., et al. Characterization of mec1 kinase-deficient mutants and of new hypomorphic mec1 alleles impairing subsets of the DNA damage response pathway. Mol. Cell. Biol. 2001, 21:3913-3925.
    • (2001) Mol. Cell. Biol. , vol.21 , pp. 3913-3925
    • Paciotti, V.1
  • 40
    • 0032987324 scopus 로고    scopus 로고
    • Specific chromosome alterations in fluconazole-resistant mutants of Candida albicans
    • Perepnikhatka V., et al. Specific chromosome alterations in fluconazole-resistant mutants of Candida albicans. J. Bacteriol. 1999, 181:4041-4049.
    • (1999) J. Bacteriol. , vol.181 , pp. 4041-4049
    • Perepnikhatka, V.1
  • 41
    • 0034075763 scopus 로고    scopus 로고
    • Importance of the Sgs1 helicase activity in DNA repair of Saccharomyces cerevisiae
    • Saffi J., et al. Importance of the Sgs1 helicase activity in DNA repair of Saccharomyces cerevisiae. Curr. Genet. 2000, 37:75-78.
    • (2000) Curr. Genet. , vol.37 , pp. 75-78
    • Saffi, J.1
  • 42
    • 0034438184 scopus 로고    scopus 로고
    • The DNA damage checkpoint and human cancer
    • Schultz L.B., et al. The DNA damage checkpoint and human cancer. Cold Spring Harb. Symp. Quant. Biol. 2000, 65:489-498.
    • (2000) Cold Spring Harb. Symp. Quant. Biol. , vol.65 , pp. 489-498
    • Schultz, L.B.1
  • 43
    • 33746506280 scopus 로고    scopus 로고
    • Aneuploidy and isochromosome formation in drug-resistant Candida albicans
    • Selmecki A., et al. Aneuploidy and isochromosome formation in drug-resistant Candida albicans. Science 2006, 313:367-370.
    • (2006) Science , vol.313 , pp. 367-370
    • Selmecki, A.1
  • 44
    • 41749113291 scopus 로고    scopus 로고
    • An isochromosome confers drug resistance in vivo by amplification of two genes, ERG11 and TAC1
    • Selmecki A., et al. An isochromosome confers drug resistance in vivo by amplification of two genes, ERG11 and TAC1. Mol. Microbiol. 2008, 68:624-641.
    • (2008) Mol. Microbiol. , vol.68 , pp. 624-641
    • Selmecki, A.1
  • 45
    • 12844257548 scopus 로고    scopus 로고
    • CaNAT1, a heterologous dominant selectable marker for transformation of Candida albicans and other pathogenic Candida species
    • Shen J., et al. CaNAT1, a heterologous dominant selectable marker for transformation of Candida albicans and other pathogenic Candida species. Infect Immun. 2005, 73:1239-1242.
    • (2005) Infect Immun. , vol.73 , pp. 1239-1242
    • Shen, J.1
  • 46
    • 33947150168 scopus 로고    scopus 로고
    • Critical role of DNA checkpoints in mediating genotoxic-stress-induced filamentous growth in Candida albicans
    • Shi Q.M., et al. Critical role of DNA checkpoints in mediating genotoxic-stress-induced filamentous growth in Candida albicans. Mol. Biol. Cell. 2007, 18:815-826.
    • (2007) Mol. Biol. Cell. , vol.18 , pp. 815-826
    • Shi, Q.M.1
  • 47
    • 0032555220 scopus 로고    scopus 로고
    • Bloom's and Werner's syndrome genes suppress hyperrecombination in yeast sgs1 mutant: implication for genomic instability in human diseases
    • Yamagata K., et al. Bloom's and Werner's syndrome genes suppress hyperrecombination in yeast sgs1 mutant: implication for genomic instability in human diseases. Proc. Natl. Acad. Sci. USA 1998, 95:8733-8738.
    • (1998) Proc. Natl. Acad. Sci. USA , vol.95 , pp. 8733-8738
    • Yamagata, K.1
  • 48
    • 15844409553 scopus 로고    scopus 로고
    • Positional cloning of the Werner's syndrome gene
    • Yu C.E., et al. Positional cloning of the Werner's syndrome gene. Science 1996, 272:258-262.
    • (1996) Science , vol.272 , pp. 258-262
    • Yu, C.E.1
  • 49
    • 0035796505 scopus 로고    scopus 로고
    • The ribonucleotide reductase inhibitor Sml1 is a new target of the Mec1/Rad53 kinase cascade during growth and in response to DNA damage
    • Zhao X., et al. The ribonucleotide reductase inhibitor Sml1 is a new target of the Mec1/Rad53 kinase cascade during growth and in response to DNA damage. EMBO J. 2001, 20:3544-3553.
    • (2001) EMBO J. , vol.20 , pp. 3544-3553
    • Zhao, X.1
  • 50
    • 0034460153 scopus 로고    scopus 로고
    • Mutational and structural analyses of the ribonucleotide reductase inhibitor Sml1 define its Rnr1 interaction domain whose inactivation allows suppression of mec1 and rad53 lethality
    • Zhao X., et al. Mutational and structural analyses of the ribonucleotide reductase inhibitor Sml1 define its Rnr1 interaction domain whose inactivation allows suppression of mec1 and rad53 lethality. Mol. Cell. Biol. 2000, 20:9076-9083.
    • (2000) Mol. Cell. Biol. , vol.20 , pp. 9076-9083
    • Zhao, X.1
  • 51
    • 0032161269 scopus 로고    scopus 로고
    • A suppressor of two essential checkpoint genes identifies a novel protein that negatively affects dNTP pools
    • Zhao X., et al. A suppressor of two essential checkpoint genes identifies a novel protein that negatively affects dNTP pools. Mol. Cell. 1998, 2:329-340.
    • (1998) Mol. Cell. , vol.2 , pp. 329-340
    • Zhao, X.1
  • 52
    • 0037567268 scopus 로고    scopus 로고
    • Sensing DNA damage through ATRIP recognition of RPA-ssDNA complexes
    • Zou L., Elledge S.J. Sensing DNA damage through ATRIP recognition of RPA-ssDNA complexes. Science 2003, 300:1542-1548.
    • (2003) Science , vol.300 , pp. 1542-1548
    • Zou, L.1    Elledge, S.J.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.