메뉴 건너뛰기




Volumn 6, Issue 1, 2011, Pages 13-23

Retraction to: Artificial neural networks: a novel tool for detecting GMO (Journal für Verbraucherschutz und Lebensmittelsicherheit, (2011), 6, 1, (13-23), 10.1007/s00003-010-0579-x);Artificial neural networks: A novel tool for detecting GMO

Author keywords

Artificial neural networks; Bt 176 transgenic maize; Genetically modified organisms; Lipid distribution PCR

Indexed keywords

ZEA MAYS;

EID: 79951768114     PISSN: 16615751     EISSN: None     Source Type: Journal    
DOI: 10.1007/s00003-017-1099-8     Document Type: Erratum
Times cited : (4)

References (38)
  • 1
    • 0042289021 scopus 로고
    • Fettsäuremethylester, Umesterung mit Trimethylsulfoniumhydroxid (Schnellverfahren)
    • Arens M, Schulte E, Weber K (1994) Fettsäuremethylester, Umesterung mit Trimethylsulfoniumhydroxid (Schnellverfahren). Fat Sci Technol 96: 67-68.
    • (1994) Fat Sci Technol , vol.96 , pp. 67-68
    • Arens, M.1    Schulte, E.2    Weber, K.3
  • 2
    • 0000990794 scopus 로고
    • Predicting protein functionality with artificial neural networks: foaming and emulsifying properties
    • Arteaga GE, Nakai S (1993) Predicting protein functionality with artificial neural networks: foaming and emulsifying properties. J Food Sci 58: 1152-1156.
    • (1993) J Food Sci , vol.58 , pp. 1152-1156
    • Arteaga, G.E.1    Nakai, S.2
  • 4
    • 0002109268 scopus 로고    scopus 로고
    • Detection of four types of genetically modified maize by polymerase chain reaction and immuno-kit methods
    • Chiueh LC, Chen YL, Yu JH, Shih OYC (2001) Detection of four types of genetically modified maize by polymerase chain reaction and immuno-kit methods. J Food Drug Anal 9: 50-57.
    • (2001) J Food Drug Anal , vol.9 , pp. 50-57
    • Chiueh, L.C.1    Chen, Y.L.2    Yu, J.H.3    Shih, O.Y.C.4
  • 5
    • 0004263033 scopus 로고    scopus 로고
    • McGraw Hill companies. McGraw Hill-Irwin, Burr Ridge, USA
    • DeLurgio SA (1998) Forecasting principles and applications. McGraw Hill companies. McGraw Hill-Irwin, Burr Ridge, USA, pp 693-696. http://www. mhhe. com/catalogs/0075611201. mhtml.
    • (1998) Forecasting principles and applications , pp. 693-696
    • DeLurgio, S.A.1
  • 7
    • 0036780408 scopus 로고    scopus 로고
    • Metallic content of wines from the Canary Islands (Spain). Application of artificial neural networks to the data analysis
    • Frías S, Conde JE, Rodríguez MA, Dohnal V, Pérez-Trujillo JP (2002) Metallic content of wines from the Canary Islands (Spain). Application of artificial neural networks to the data analysis. Nahrung (Food) 46: 370-375.
    • (2002) Nahrung (Food) , vol.46 , pp. 370-375
    • Frías, S.1    Conde, J.E.2    Rodríguez, M.A.3    Dohnal, V.4    Pérez-Trujillo, J.P.5
  • 8
    • 0037205614 scopus 로고    scopus 로고
    • Ultrasensitive detection of genetically modified maize DNA by capillary gel electrophoresis with laser-induced fluorescence using different fluorescent intercalating dyes
    • Garcia-Canas V, Gonzalez R, Cifuentes A (2002) Ultrasensitive detection of genetically modified maize DNA by capillary gel electrophoresis with laser-induced fluorescence using different fluorescent intercalating dyes. J Agric Food Chem 50: 4497-4502.
    • (2002) J Agric Food Chem , vol.50 , pp. 4497-4502
    • Garcia-Canas, V.1    Gonzalez, R.2    Cifuentes, A.3
  • 9
    • 18844462773 scopus 로고    scopus 로고
    • Virgin olive oil quality classification combining neural network and MOS sensors
    • García-Gonzàlez DL, Aparicio R (2003) Virgin olive oil quality classification combining neural network and MOS sensors. J Agric Food Chem 51: 3515-3519.
    • (2003) J Agric Food Chem , vol.51 , pp. 3515-3519
    • García-Gonzàlez, D.L.1    Aparicio, R.2
  • 10
    • 84988201553 scopus 로고
    • Rapid assessment of the adulteration of virgin olive oils by other seed oils using pyrolysis mass spectrometry and Artificial Neural Networks
    • Goodacre R, Kell DB (1992) Rapid assessment of the adulteration of virgin olive oils by other seed oils using pyrolysis mass spectrometry and Artificial Neural Networks. J Sci Food Agric 63: 297-307.
    • (1992) J Sci Food Agric , vol.63 , pp. 297-307
    • Goodacre, R.1    Kell, D.B.2
  • 11
    • 11144238296 scopus 로고    scopus 로고
    • Determination of phenolic compounds by a polyphenol oxidase amperometric biosensor and artificial neural network analysis
    • Gutes A, Cespedes F, Alegret S, Valle M (2005) Determination of phenolic compounds by a polyphenol oxidase amperometric biosensor and artificial neural network analysis. Biosens Bioelectron 20: 1668-1673.
    • (2005) Biosens Bioelectron , vol.20 , pp. 1668-1673
    • Gutes, A.1    Cespedes, F.2    Alegret, S.3    Valle, M.4
  • 13
    • 0000750567 scopus 로고
    • Neural Networks vs. principal component regression for prediction of wheat flour loaf volume in baking tests
    • Horimoto Y, Durance T, Nakai S, Lukow OM (1995) Neural Networks vs. principal component regression for prediction of wheat flour loaf volume in baking tests. J Food Sci 60: 429-433.
    • (1995) J Food Sci , vol.60 , pp. 429-433
    • Horimoto, Y.1    Durance, T.2    Nakai, S.3    Lukow, O.M.4
  • 16
    • 85022930601 scopus 로고
    • Neural networks: an overview
    • Jansson PA (1991) Neural networks: an overview. Anal Chem 63: 357-362.
    • (1991) Anal Chem , vol.63 , pp. 357-362
    • Jansson, P.A.1
  • 17
    • 0030130753 scopus 로고    scopus 로고
    • Designing a neural network for forecasting financial economic time series
    • Kaastra I, Boyd M (1996) Designing a neural network for forecasting financial economic time series. Neurocomputing 10: 215-236.
    • (1996) Neurocomputing , vol.10 , pp. 215-236
    • Kaastra, I.1    Boyd, M.2
  • 18
  • 20
    • 0037205603 scopus 로고    scopus 로고
    • Detection and quantification of transgenes in grains by multiplex and real-time PCR
    • Permingeat HR, Reggiardo MI, Vallejos RH (2002) Detection and quantification of transgenes in grains by multiplex and real-time PCR. J Agric Food Chem 50: 4431-4436.
    • (2002) J Agric Food Chem , vol.50 , pp. 4431-4436
    • Permingeat, H.R.1    Reggiardo, M.I.2    Vallejos, R.H.3
  • 22
    • 0034274312 scopus 로고    scopus 로고
    • Predicting oxidative stability of vegetable oils using neural network system and endogenous oil components
    • Przybylski R, Zambiazi RC (2005) Predicting oxidative stability of vegetable oils using neural network system and endogenous oil components. JAOCS 77: 925-932.
    • (2005) Jaocs , vol.77 , pp. 925-932
    • Przybylski, R.1    Zambiazi, R.C.2
  • 23
    • 0035427685 scopus 로고    scopus 로고
    • Theory and methodology: an investigation of model selection criteria for neural network time series forecasting
    • Qi M, Zhang GP (2001) Theory and methodology: an investigation of model selection criteria for neural network time series forecasting. Eur J Oper Res 132: 666-680.
    • (2001) Eur J Oper Res , vol.132 , pp. 666-680
    • Qi, M.1    Zhang, G.P.2
  • 24
    • 0037807568 scopus 로고    scopus 로고
    • Direct isocratic normal phase assay of fat-soluble vitamins and β-carotene in oilseeds
    • Ramadan MF, Mörsel JT (2002) Direct isocratic normal phase assay of fat-soluble vitamins and β-carotene in oilseeds. Eur Food Res Technol 214: 521-527.
    • (2002) Eur Food Res Technol , vol.214 , pp. 521-527
    • Ramadan, M.F.1    Mörsel, J.T.2
  • 25
    • 0037433142 scopus 로고    scopus 로고
    • Oil goldenberry (Physalis peruviana L.)
    • Ramadan MF, Mörsel JT (2003) Oil goldenberry (Physalis peruviana L.). J Agric Food Chem 51: 969-974.
    • (2003) J Agric Food Chem , vol.51 , pp. 969-974
    • Ramadan, M.F.1    Mörsel, J.T.2
  • 26
    • 33744804336 scopus 로고    scopus 로고
    • Modelling fresh tomato marketing margins: econometrics and neural networks
    • Richards TJ, Patterson PM, Van-Ispelen P (1998) Modelling fresh tomato marketing margins: econometrics and neural networks. Agric Resour Econ Rev 27: 186-199.
    • (1998) Agric Resour Econ Rev , vol.27 , pp. 186-199
    • Richards, T.J.1    Patterson, P.M.2    Van-Ispelen, P.3
  • 27
    • 0001223496 scopus 로고
    • Prediction of dough rheological properties using neural networks
    • Ruan R, Almaer S, Zhang J (1995) Prediction of dough rheological properties using neural networks. Cereal Chem 72: 308-311.
    • (1995) Cereal Chem , vol.72 , pp. 308-311
    • Ruan, R.1    Almaer, S.2    Zhang, J.3
  • 30
    • 0031468475 scopus 로고    scopus 로고
    • Food from genetically modified organisms and potential for food allergy
    • Taylor SL (1997) Food from genetically modified organisms and potential for food allergy. Environm Toxicol Pharmacol 4: 121-126.
    • (1997) Environm Toxicol Pharmacol , vol.4 , pp. 121-126
    • Taylor, S.L.1
  • 31
    • 0034891342 scopus 로고    scopus 로고
    • PCR-based detection of genetically modified soybean and maize in raw and highly processed foodstuffs
    • Tengel C, Schussler P, Setzke E, Balles J, Sprenger-Haussels M (2001) PCR-based detection of genetically modified soybean and maize in raw and highly processed foodstuffs. Biotechniques 31: 426-429.
    • (2001) Biotechniques , vol.31 , pp. 426-429
    • Tengel, C.1    Schussler, P.2    Setzke, E.3    Balles, J.4    Sprenger-Haussels, M.5
  • 32
    • 14644435683 scopus 로고    scopus 로고
    • Artificial neural networks: a promising tool to design and optimize high-pressure food processes
    • Torrecilla JS, Otero L, Sanz PD (2005) Artificial neural networks: a promising tool to design and optimize high-pressure food processes. J Food Eng 69: 299-306.
    • (2005) J Food Eng , vol.69 , pp. 299-306
    • Torrecilla, J.S.1    Otero, L.2    Sanz, P.D.3
  • 34
    • 0043042112 scopus 로고    scopus 로고
    • Real-time quantitative PCR detection of genetically modified maximizer maize and roundup ready soybean in some representative foods
    • Vaitilingom M, Pijnenburg H, Gendre F, Brignon P (1999) Real-time quantitative PCR detection of genetically modified maximizer maize and roundup ready soybean in some representative foods. J Agric Food Chem 47: 5261-5266.
    • (1999) J Agric Food Chem , vol.47 , pp. 5261-5266
    • Vaitilingom, M.1    Pijnenburg, H.2    Gendre, F.3    Brignon, P.4
  • 35
    • 84986492463 scopus 로고
    • Predicting milk shelf-life based on artificial neural networks and head space gas chromatographic data
    • Vallejo-Cordoba B, Arteaga GE, Nakai S (1995) Predicting milk shelf-life based on artificial neural networks and head space gas chromatographic data. J Food Sci 60: 885-888.
    • (1995) J Food Sci , vol.60 , pp. 885-888
    • Vallejo-Cordoba, B.1    Arteaga, G.E.2    Nakai, S.3
  • 36
    • 0035899178 scopus 로고    scopus 로고
    • Prediction of the aroma quality and threshold values of some pyrazines using artificial neural networks
    • Wailzer B, Klocker J, Buchbauer G, Ecker G, Wolschann P (2001) Prediction of the aroma quality and threshold values of some pyrazines using artificial neural networks. J Med Chem 44: 2805-2813.
    • (2001) J Med Chem , vol.44 , pp. 2805-2813
    • Wailzer, B.1    Klocker, J.2    Buchbauer, G.3    Ecker, G.4    Wolschann, P.5
  • 37
    • 0026771388 scopus 로고
    • Hybrid system for protein secondary structure prediction
    • Zhang X, Mesirov JP, Waltz DL (1992) Hybrid system for protein secondary structure prediction. J Mol Biol 225: 1040-1063.
    • (1992) J Mol Biol , vol.225 , pp. 1040-1063
    • Zhang, X.1    Mesirov, J.P.2    Waltz, D.L.3
  • 38
    • 0003123930 scopus 로고    scopus 로고
    • Forecasting with artificial neural networks: the state of the art
    • Zhang G, Patuwo BE, Hu MY (1998) Forecasting with artificial neural networks: the state of the art. Int J Forecast 14: 35-62.
    • (1998) Int J Forecast , vol.14 , pp. 35-62
    • Zhang, G.1    Patuwo, B.E.2    Hu, M.Y.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.