메뉴 건너뛰기




Volumn , Issue , 2006, Pages 521-532

Neural networks and machine learning in bioinformatics - Theory and applications

Author keywords

[No Author keywords available]

Indexed keywords

BIOINFORMATICS; MACHINE LEARNING; NEURAL NETWORKS;

EID: 79951615485     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: None     Document Type: Conference Paper
Times cited : (18)

References (87)
  • 3
    • 85069752587 scopus 로고    scopus 로고
    • Functional classification of transcription factor binding sites: Information content as a metric
    • 2006-02-06
    • D. Ashok Reddy, B.V.L.S. Prasad, and C.K. Mitra. Functional classification of transcription factor binding sites: information content as a metric. Journal of Integrative Bioinformatics, 2006-02-06, 2006.
    • (2006) Journal of Integrative Bioinformatics
    • Ashok Reddy, D.1    Prasad, B.V.L.S.2    Mitra, C.K.3
  • 5
    • 8844269075 scopus 로고    scopus 로고
    • A dynamically growing self-organizing tree (dgsot) for hierarchical clustering gene expression profiles
    • F. Luo, L. Khan, F. Bastani, I. Yen, and J. Zhou. A dynamically growing self-organizing tree (dgsot) for hierarchical clustering gene expression profiles. Bioinformatics, 20:2605-2617, 2004.
    • (2004) Bioinformatics , vol.20 , pp. 2605-2617
    • Luo, F.1    Khan, L.2    Bastani, F.3    Yen, I.4    Zhou, J.5
  • 7
    • 33645289673 scopus 로고    scopus 로고
    • Incorporating gene functions as priors in model-based clustering of microarray gene expression data
    • W. Pan. Incorporating gene functions as priors in model-based clustering of microarray gene expression data. Bioinformatics, Advance Access, 2006.
    • (2006) Bioinformatics, Advance Access
    • Pan, W.1
  • 13
    • 28944444652 scopus 로고    scopus 로고
    • Differential coexpression analysis using microarray data and its application to human cancer
    • J.K. Choi, U. Yu, O.J. Yoo, and S. Kim. Differential coexpression analysis using microarray data and its application to human cancer. Bioinformatics, 22:4348-4355, 2006.
    • (2006) Bioinformatics , vol.22 , pp. 4348-4355
    • Choi, J.K.1    Yu, U.2    Yoo, O.J.3    Kim, S.4
  • 14
    • 10244264813 scopus 로고    scopus 로고
    • Protein complex prediction via cost-based clustering
    • A.D. King, N. Przulj, and I. Jurisica. Protein complex prediction via cost-based clustering. Bioinformatics, 20:3013-3020, 2004.
    • (2004) Bioinformatics , vol.20 , pp. 3013-3020
    • King, A.D.1    Przulj, N.2    Jurisica, I.3
  • 15
    • 14644399780 scopus 로고    scopus 로고
    • Clustering of diverse genomic data using information fusion
    • J. Kasturi and R. Acharya. Clustering of diverse genomic data using information fusion. Bioinformatics, 21:423-429, 2005.
    • (2005) Bioinformatics , vol.21 , pp. 423-429
    • Kasturi, J.1    Acharya, R.2
  • 16
    • 33645305965 scopus 로고    scopus 로고
    • Novel technique for preprocessing high dimensional time-course data from DNA microarray: Mathematical model-based clustering
    • K. Hakamada, M. Okamoto, and T. Hanai. Novel technique for preprocessing high dimensional time-course data from DNA microarray: mathematical model-based clustering. Bioinformatics, Advance Access, 2006.
    • (2006) Bioinformatics, Advance Access
    • Hakamada, K.1    Okamoto, M.2    Hanai, T.3
  • 21
    • 19544367642 scopus 로고    scopus 로고
    • A novel approach for clustering proteomics data using Bayesian fast fourier transform
    • H. Bensmail, J. Golek, M.M. Moody, J.O. Semmes, and A. Haoudi. A novel approach for clustering proteomics data using bayesian fast fourier transform. Bioinformatics, 21:2210-2224, 2005.
    • (2005) Bioinformatics , vol.21 , pp. 2210-2224
    • Bensmail, H.1    Golek, J.2    Moody, M.M.3    Semmes, J.O.4    Haoudi, A.5
  • 23
    • 33646138726 scopus 로고    scopus 로고
    • Development and validation of a consistency based multiple structure alignment algorithm
    • J. Ebert and D. Brutlag. Development and validation of a consistency based multiple structure alignment algorithm. Bioinformatics, Advance Access, 2006.
    • (2006) Bioinformatics, Advance Access
    • Ebert, J.1    Brutlag, D.2
  • 24
    • 25144448206 scopus 로고    scopus 로고
    • Algorithms for alignment of mass spectrometry proteomic data
    • N. Jeffries. Algorithms for alignment of mass spectrometry proteomic data. Bioinformatics, 21:3066-3073, 2005.
    • (2005) Bioinformatics , vol.21 , pp. 3066-3073
    • Jeffries, N.1
  • 27
    • 8844220454 scopus 로고    scopus 로고
    • Mining gene expression data for positive and negative co-regulated gene clusters
    • L. Ji and K. Tan. Mining gene expression data for positive and negative co-regulated gene clusters. Bioinformatics, 20:2711-2718, 2004.
    • (2004) Bioinformatics , vol.20 , pp. 2711-2718
    • Ji, L.1    Tan, K.2
  • 34
    • 28444453303 scopus 로고    scopus 로고
    • Syntons, metabolons and interac-tons: An exact graph-theoretical approach for exploring neighbourhood between genomic and functional data
    • F. Boyer, A. Morgat, L. Labarre, J. Pothier, and A. Viari. Syntons, metabolons and interac-tons: an exact graph-theoretical approach for exploring neighbourhood between genomic and functional data. Bioinformatics, 21:4209-4215, 2005.
    • (2005) Bioinformatics , vol.21 , pp. 4209-4215
    • Boyer, F.1    Morgat, A.2    Labarre, L.3    Pothier, J.4    Viari, A.5
  • 35
    • 27744448992 scopus 로고    scopus 로고
    • Network constrained clustering for gene microarray data
    • D. Zhu, A.O. Hero, H. Cheng, R. Khanna, and A. Swaroop. Network constrained clustering for gene microarray data. Bioinformatics, 21:4014-4020, 2005.
    • (2005) Bioinformatics , vol.21 , pp. 4014-4020
    • Zhu, D.1    Hero, A.O.2    Cheng, H.3    Khanna, R.4    Swaroop, A.5
  • 36
    • 14644403631 scopus 로고    scopus 로고
    • An integrated tool for microarray data clustering and cluster validity assessment
    • N. Bolshakova, F. Azuaje, and P. Cunningham. An integrated tool for microarray data clustering and cluster validity assessment. Bioinformatics, 21:451-455, 2005.
    • (2005) Bioinformatics , vol.21 , pp. 451-455
    • Bolshakova, N.1    Azuaje, F.2    Cunningham, P.3
  • 37
    • 14644416505 scopus 로고    scopus 로고
    • Identifying time-lagged gene clusters using gene expression data
    • L. Ji and K. Tan. Identifying time-lagged gene clusters using gene expression data. Bioinformatics, 21:509-516, 2005.
    • (2005) Bioinformatics , vol.21 , pp. 509-516
    • Ji, L.1    Tan, K.2
  • 38
    • 30344442460 scopus 로고    scopus 로고
    • Robust multi-scale clustering of large DNA microarray datasets with the consensus algorithm
    • T. Grotkjaer, O. Winther, B. Regenberg, J. Nielsen, and L.K. Hansen. Robust multi-scale clustering of large DNA microarray datasets with the consensus algorithm. Bioinformatics, 22:58-67, 2006.
    • (2006) Bioinformatics , vol.22 , pp. 58-67
    • Grotkjaer, T.1    Winther, O.2    Regenberg, B.3    Nielsen, J.4    Hansen, L.K.5
  • 39
    • 30344473638 scopus 로고    scopus 로고
    • A novel algorithm and web-based tool for comparing two alternative phylogenetic trees
    • T.M.W. Nye, P. Lió, and W.R. Gilks. A novel algorithm and web-based tool for comparing two alternative phylogenetic trees. Bioinformatics, 22:117-119, 2006.
    • (2006) Bioinformatics , vol.22 , pp. 117-119
    • Nye, T.M.W.1    Lió, P.2    Gilks, W.R.3
  • 40
    • 27744459345 scopus 로고    scopus 로고
    • A new algorithm for comparing and visualizing relationships between hierarchical and flat gene expression data clusterings
    • A. Torrente, M. Kapushesky, and A. Brazma. A new algorithm for comparing and visualizing relationships between hierarchical and flat gene expression data clusterings. Bioinformatics, 21:3993-3999, 2005.
    • (2005) Bioinformatics , vol.21 , pp. 3993-3999
    • Torrente, A.1    Kapushesky, M.2    Brazma, A.3
  • 41
    • 0141743613 scopus 로고    scopus 로고
    • Machine learning approaches to lung cancer prediction from mass spectra
    • M. Hilario, A. Kalousis, M. Müller, and C. Pelligrini. Machine learning approaches to lung cancer prediction from mass spectra. Proteomics, 3:1716-1719, 2003.
    • (2003) Proteomics , vol.3 , pp. 1716-1719
    • Hilario, M.1    Kalousis, A.2    Müller, M.3    Pelligrini, C.4
  • 43
    • 0036324715 scopus 로고    scopus 로고
    • Proteomics and bioinformatics approaches for identification of serum biomarkers to detect breast cancer
    • J. Li, Z. Zhang, J. Rosenzweig, Y.Y. Wang, and D.W. Chan. Proteomics and bioinformatics approaches for identification of serum biomarkers to detect breast cancer. Clinical Chemistry, 48(8):1296-1304, 2002.
    • (2002) Clinical Chemistry , vol.48 , Issue.8 , pp. 1296-1304
    • Li, J.1    Zhang, Z.2    Rosenzweig, J.3    Wang, Y.Y.4    Chan, D.W.5
  • 44
    • 0742269626 scopus 로고    scopus 로고
    • Probabilistic disease classification of expression-dependent proteomic data from mass spectrometry of human serum
    • R.H. Lilien, H. Farid, and B.R. Donald. Probabilistic disease classification of expression-dependent proteomic data from mass spectrometry of human serum. Journal of Computational Biology, 10(6):925-946, 2003.
    • (2003) Journal of Computational Biology , vol.10 , Issue.6 , pp. 925-946
    • Lilien, R.H.1    Farid, H.2    Donald, B.R.3
  • 46
    • 0034136782 scopus 로고    scopus 로고
    • Modeling splice sites with bayes networks
    • D. Cai, A. Delcher, B. Kao, and S. Kasif. Modeling splice sites with bayes networks. Bioinformatics, 16(2):152-158, 2000.
    • (2000) Bioinformatics , vol.16 , Issue.2 , pp. 152-158
    • Cai, D.1    Delcher, A.2    Kao, B.3    Kasif, S.4
  • 52
    • 0042923097 scopus 로고    scopus 로고
    • Class prediction and discovery using gene microarray and proteomics mass spectrosopy data: Curses, caveats, cautions
    • R.L. Somorjai, B. Dolenko, and R. Baumgartner. Class prediction and discovery using gene microarray and proteomics mass spectrosopy data: curses, caveats, cautions. Bioinformatics, 19(12):1484-1491, 2003.
    • (2003) Bioinformatics , vol.19 , Issue.12 , pp. 1484-1491
    • Somorjai, R.L.1    Dolenko, B.2    Baumgartner, R.3
  • 53
    • 18344396961 scopus 로고    scopus 로고
    • An integrated approach utilizing artificial neural networks and SELDI mass spectrometry for the classification of human tumours and rapid identification of potential biomarkers
    • G. Ball, S. Mian, F. Holding, R.O. Allibone, J. Lowe, S. Ali, G. Li, S. McCardle, I.O. Ellis, C. Creaser, and R.C. Rees. An integrated approach utilizing artificial neural networks and SELDI mass spectrometry for the classification of human tumours and rapid identification of potential biomarkers. Bioinformatics, 18(3):395-404, 2002.
    • (2002) Bioinformatics , vol.18 , Issue.3 , pp. 395-404
    • Ball, G.1    Mian, S.2    Holding, F.3    Allibone, R.O.4    Lowe, J.5    Ali, S.6    Li, G.7    McCardle, S.8    Ellis, I.O.9    Creaser, C.10    Rees, R.C.11
  • 54
    • 85069796019 scopus 로고    scopus 로고
    • Local metric adaptation for soft nearest prototype classification to classify proteomic data
    • to appear
    • Th. Villmann, F.-M. Schleif, and B. Hammer. Local metric adaptation for soft nearest prototype classification to classify proteomic data. Neurocomputing, page to appear, 2006.
    • (2006) Neurocomputing
    • Villmann, Th.1    Schleif, F.-M.2    Hammer, B.3
  • 59
    • 12844250052 scopus 로고    scopus 로고
    • Supervised neural gas with general similarity measure
    • B. Hammer, M. Strickert, and Th. Villmann. Supervised neural gas with general similarity measure. Neural Processing Letters, 21(1):21-44, 2005.
    • (2005) Neural Processing Letters , vol.21 , Issue.1 , pp. 21-44
    • Hammer, B.1    Strickert, M.2    Villmann, Th.3
  • 64
    • 18544384330 scopus 로고    scopus 로고
    • Prototype based recognition of splice sites
    • U. Seiffert, L.C. Jain, and Schweizer, editors, Springer-Verlag
    • B. Hammer, M. Strickert, and Th. Villmann. Prototype based recognition of splice sites. In U. Seiffert, L.C. Jain, and P. Schweizer, editors, Bioinformatics using Computational Intelligence Paradigms, pages 25-56. Springer-Verlag, 2005.
    • (2005) Bioinformatics Using Computational Intelligence Paradigms , pp. 25-56
    • Hammer, B.1    Strickert, M.2    Villmann, Th.3
  • 65
  • 68
    • 0842288337 scopus 로고    scopus 로고
    • Inferring cellular networks using probabilistic graphical models
    • N. Friedman. Inferring cellular networks using probabilistic graphical models. Science, 303:799-805, 2004.
    • (2004) Science , vol.303 , pp. 799-805
    • Friedman, N.1
  • 76
    • 2942627591 scopus 로고    scopus 로고
    • Three-dimensional reconstruction of cellular structures by electron microscope tomography and parallel computing
    • J. Fernandez, J. Carazo, and I. Garcia. Three-dimensional reconstruction of cellular structures by electron microscope tomography and parallel computing. Journal of Parallel and Distributed Computing, 64(2):285-300, 2004.
    • (2004) Journal of Parallel and Distributed Computing , vol.64 , Issue.2 , pp. 285-300
    • Fernandez, J.1    Carazo, J.2    Garcia, I.3
  • 78
    • 1542786199 scopus 로고    scopus 로고
    • Artificial neural networks on massively parallel computer hardware
    • March
    • U. Seiffert. Artificial neural networks on massively parallel computer hardware. Neurocomputing, 57:135-150, March 2004.
    • (2004) Neurocomputing , vol.57 , pp. 135-150
    • Seiffert, U.1
  • 80
    • 0242676165 scopus 로고    scopus 로고
    • Multi-dimensional Self-Organizing Maps on massively parallel hardware
    • Nigel Allinson, Hujun Yin, Lesley Allinson, and Jon Slack, editors, London, U.K, Springer-Verlag
    • U. Seiffert and B. Michaelis. Multi-dimensional Self-Organizing Maps on massively parallel hardware. In Nigel Allinson, Hujun Yin, Lesley Allinson, and Jon Slack, editors, Advances in Self-Organizing Maps: Proceedings of the 3. Workshop on Self-Organizing Maps WSOM 2001, pages 160-166, London, U.K., 2001. Springer-Verlag.
    • (2001) Advances in Self-Organizing Maps: Proceedings of the 3. Workshop on Self-Organizing Maps WSOM 2001 , pp. 160-166
    • Seiffert, U.1    Michaelis, B.2
  • 81
    • 33745751254 scopus 로고    scopus 로고
    • Theoretical and experimental DNA computation
    • Springer, Berlin
    • M. Amos. Theoretical and Experimental DNA Computation. Natural Computing. Springer, Berlin, 2005.
    • (2005) Natural Computing
    • Amos, M.1
  • 86
    • 85069793620 scopus 로고    scopus 로고
    • Adaptive implementation of artificial neural networks reflecting changing hardware resources at run-time
    • M.H. Hamza, editor, Anaheim, IASTED, ACTA Press
    • U. Seiffert. Adaptive implementation of artificial neural networks reflecting changing hardware resources at run-time. In M.H. Hamza, editor, Proceedings of the 23rd International Conference on Artificial Intelligence and Applications (AIA), pages 733-737, Anaheim, 2005. IASTED, ACTA Press.
    • (2005) Proceedings of the 23rd International Conference on Artificial Intelligence and Applications (AIA) , pp. 733-737
    • Seiffert, U.1
  • 87
    • 33744929852 scopus 로고    scopus 로고
    • Perspectives of self-adapted self-organizing clustering in organic computing
    • A.J. Ijspeert, T. Masuzawa, and S. Kusumoto, editors, Springer-Verlag, Heidelberg
    • Th. Villmann, B. Hammer, and U. Seiffert. Perspectives of self-adapted self-organizing clustering in organic computing. In A.J. Ijspeert, T. Masuzawa, and S. Kusumoto, editors, Biologically Inspired Approaches to Advanced Information Technology, pages 141-159. Springer-Verlag, Heidelberg, 2006.
    • (2006) Biologically Inspired Approaches to Advanced Information Technology , pp. 141-159
    • Villmann, Th.1    Hammer, B.2    Seiffert, U.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.