메뉴 건너뛰기




Volumn , Issue , 2007, Pages 331-338

Generalized relevance LVQ with correlation measures for biological data

Author keywords

Adaptive metrics; Correlation measure; GRLVQ; Learning vector quantization; Prototype based learning

Indexed keywords

ADAPTIVE METRICS; CORRELATION MEASURES; GRLVQ; LEARNING VECTOR QUANTIZATION; PROTOTYPE-BASED LEARNING;

EID: 84887004970     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: None     Document Type: Conference Paper
Times cited : (2)

References (10)
  • 1
    • 84887004852 scopus 로고    scopus 로고
    • FL3 Handwritten Symbol Database - Subset of the NIST Special Database 1, NIST
    • FL3 Handwritten Symbol Database - Subset of the NIST Special Database 1, NIST. ftp://sequoyah.ncsl.nist.gov/pub/databases/data.
  • 2
    • 33745194280 scopus 로고    scopus 로고
    • Similarity-based neural networks for applications in computational molecular biology
    • I. Fischer. Similarity-based neural networks for applications in computational molecular biology. Advances in Intelligent Data Analysis V, 5(3):208-218, 2003.
    • (2003) Advances In Intelligent Data Analysis V , vol.5 , Issue.3 , pp. 208-218
    • Fischer, I.1
  • 3
    • 9444220311 scopus 로고    scopus 로고
    • Relevance LVQ versus SVM
    • L. Rutkowski, J. Siekmann, R. Tadeusiewicz, and L. Zadeh, editors, Springer Lecture Notes in Artificial Intelligence, Springer
    • B. Hammer, M. Strickert, and T. Villmann. Relevance LVQ versus SVM. In L. Rutkowski, J. Siekmann, R. Tadeusiewicz, and L. Zadeh, editors, Artificial Intelligence and Softcomputing, volume 3070 of Springer Lecture Notes in Artificial Intelligence, pages 592-597. Springer, 2004.
    • (2004) Artificial Intelligence and Softcomputing , vol.3070 , pp. 592-597
    • Hammer, B.1    Strickert, M.2    Villmann, T.3
  • 4
    • 0036791938 scopus 로고    scopus 로고
    • Generalized Relevance Learning Vector Quantization
    • B. Hammer and T. Villmann. Generalized Relevance Learning Vector Quantization. Neural Networks, 15:1059-1068, 2002.
    • (2002) Neural Networks , vol.15 , pp. 1059-1068
    • Hammer, B.1    Villmann, T.2
  • 5
    • 0035392549 scopus 로고    scopus 로고
    • Bankruptcy analysis with self-organizing maps in learning metrics
    • S. Kaski. Bankruptcy analysis with self-organizing maps in learning metrics. IEEE Transactions on Neural Networks, 12:936-947, 2001.
    • (2001) IEEE Transactions On Neural Networks , vol.12 , pp. 936-947
    • Kaski, S.1
  • 6
    • 0003410791 scopus 로고    scopus 로고
    • Springer-Verlag, Berlin, 3rd edition
    • T. Kohonen. Self-Organizing Maps. Springer-Verlag, Berlin, 3rd edition, 2001.
    • (2001) Self-Organizing Maps
    • Kohonen, T.1
  • 7
    • 0027632248 scopus 로고
    • Neural-gas network for vector quantization and its application to time-series prediction
    • T. Martinetz, S. Berkovich, and K. Schulten. "Neural-gas" network for vector quantization and its application to time-series prediction. IEEE Transactions on Neural Networks, 4(4):558-569, 1993.
    • (1993) IEEE Transactions On Neural Networks , vol.4 , Issue.4 , pp. 558-569
    • Martinetz, T.1    Berkovich, S.2    Schulten, K.3
  • 8
    • 15844393601 scopus 로고    scopus 로고
    • Clustering functional data with the SOM algorithm
    • Bruges, Belgium, April
    • F. Rossi, B. Conan-Guez, and A. E. Golli. Clustering functional data with the SOM algorithm. In Proceedings of ESANN 2004, pages 305-312, Bruges, Belgium, April 2004.
    • (2004) Proceedings of ESANN 2004 , pp. 305-312
    • Rossi, F.1    Conan-Guez, B.2    Golli, A.E.3
  • 9
    • 85156210800 scopus 로고
    • Generalized Learning Vector Quantization
    • G. Tesauro, D. Touretzky, and T. Leen, editors, MIT Press
    • A. Sato and K. Yamada. Generalized Learning Vector Quantization. In G. Tesauro, D. Touretzky, and T. Leen, editors, Advances in Neural Information Processing Systems 7 (NIPS), volume 7, pages 423-429. MIT Press, 1995.
    • (1995) Advances In Neural Information Processing Systems 7 (NIPS) , vol.7 , pp. 423-429
    • Sato, A.1    Yamada, K.2
  • 10
    • 32544447887 scopus 로고    scopus 로고
    • Supervised Neural Gas and Relevance Learning in Learning Vector Quantization
    • T. Yamakawa, editor, Kyushu Institute of Technology
    • T. Villmann, F. Schleif, and B. Hammer. Supervised Neural Gas and Relevance Learning in Learning Vector Quantization. In T. Yamakawa, editor, Proc. of the Workshop on Self-Organizing Networks (WSOM), pages 47-52, Kyushu Institute of Technology, 2003.
    • (2003) Proc. of the Workshop On Self-Organizing Networks (WSOM) , pp. 47-52
    • Villmann, T.1    Schleif, F.2    Hammer, B.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.