메뉴 건너뛰기




Volumn , Issue , 2007, Pages 303-314

Classification using non-standard metrics

Author keywords

[No Author keywords available]

Indexed keywords

COMPLEX DATA STRUCTURES; EUCLIDEAN METRICS; EUCLIDIAN METRIC; METRIC ADAPTATION; NATURAL LANGUAGE PROCESSING; SIMILARITY CALCULATION; SIMILARITY MEASURE; SIMILARITY-BASED METHODS;

EID: 84887005989     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: None     Document Type: Conference Paper
Times cited : (18)

References (90)
  • 1
    • 10944226453 scopus 로고    scopus 로고
    • An information energy LVQ approach for feature ranking
    • M. Verleysen, editor, d-side publications
    • R. Andonie and A. Cataron. An information energy LVQ approach for feature ranking. In M. Verleysen, editor, European Symposium on Artificial Neural Networks 2004, pages 471-476. d-side publications, 2004.
    • (2004) European Symposium On Artificial Neural Networks 2004 , pp. 471-476
    • Andonie, R.1    Cataron, A.2
  • 3
    • 33947233031 scopus 로고    scopus 로고
    • Out-ofsample extensions for lle, isomap, mds, eigenmaps, and spectr al clustering
    • In S. Thrun, L. Saul, and B. Schölkopf, editors, MIT Press, Cambridge, MA
    • Y. Bengio, J. Paiement, P. Vincent, O. Delalleau, N. L. Roux, and M. Ouimet. Out-ofsample extensions for lle, isomap, mds, eigenmaps, and spectr al clustering. In S. Thrun, L. Saul, and B. Schölkopf, editors, Advances in Neural Information Processing Systems 16. MIT Press, Cambridge, MA, 2004.
    • (2004) Advances In Neural Information Processing Systems , pp. 16
    • Bengio, Y.1    Paiement, J.2    Vincent, P.3    Delalleau, O.4    Roux, N.L.5    Ouimet, M.6
  • 6
    • 0036605279 scopus 로고    scopus 로고
    • Graph multidimensional scaling with self-organizing maps
    • June
    • E. Bonabeau. Graph multidimensional scaling with self-organizing maps. Information Sciences, 143(1-4):159-180, June 2002.
    • (2002) Information Sciences , vol.143 , Issue.1-4 , pp. 159-180
    • Bonabeau, E.1
  • 9
    • 2442536791 scopus 로고    scopus 로고
    • Dissimilarity learning for nominal data
    • V. Cheng, C.-H. Li, J. Kwok, and C.-K. Li. Dissimilarity learning for nominal data. Pattern Recognition, 37(7):1471-1477, 2004.
    • (2004) Pattern Recognition , vol.37 , Issue.7 , pp. 1471-1477
    • Cheng, V.1    Li, C.-H.2    Kwok, J.3    Li, C.-K.4
  • 10
    • 0042168470 scopus 로고
    • Two or three things that we know about the Kohonen algorithm
    • In M. Verleysen, editor, Brussels, Belgium, D facto conference services
    • M. Cottrell, J. C. Fort, and G. Pagès. Two or three things that we know about the Kohonen algorithm. In M. Verleysen, editor, Proc. ESANN'94, European Symp. on Artificial Neural Networks, pages 235-244, Brussels, Belgium, 1994. D facto conference services.
    • (1994) Proc. ESANN'94, European Symp. On Artificial Neural Networks , pp. 235-244
    • Cottrell, M.1    Fort, J.C.2    Pagès, G.3
  • 11
    • 9144249823 scopus 로고    scopus 로고
    • SOM-based algorithms for qualitative variables
    • M. Cottrell, S. Ibbou, and P. Letrémy. SOM-based algorithms for qualitative variables. Neural Networks, 17:1149-1168, 2004.
    • (2004) Neural Networks , vol.17 , pp. 1149-1168
    • Cottrell, M.1    Ibbou, S.2    Letrémy, P.3
  • 12
    • 0031042985 scopus 로고    scopus 로고
    • Phylogenetic reconstruction using an unsupervised growing neural network that adopts the topology of a phylogenetic tree
    • J. Dopazo and J. Carazo. Phylogenetic reconstruction using an unsupervised growing neural network that adopts the topology of a phylogenetic tree. Journal of Molecular Evolution, 44(2):226-233, 1997.
    • (1997) Journal of Molecular Evolution , vol.44 , Issue.2 , pp. 226-233
    • Dopazo, J.1    Carazo, J.2
  • 15
    • 84898963788 scopus 로고    scopus 로고
    • Object classification from a single example utilizing class relevance pseudometrics
    • In L. K. Saul, Y. Weiss, and L. Bottou, editors, MIT Press, Cambridge, MA
    • M. Fink. Object classification from a single example utilizing class relevance pseudometrics. In L. K. Saul, Y. Weiss, and L. Bottou, editors, Advances in Neural Information Processing Systems 17. MIT Press, Cambridge, MA, 2005.
    • (2005) Advances In Neural Information Processing Systems , pp. 17
    • Fink, M.1
  • 17
    • 84887013918 scopus 로고    scopus 로고
    • Adaptive topological tree structure (ATTS) for document organisation and visualisation
    • in press
    • R. Freeman and H. Yin. Adaptive topological tree structure (ATTS) for document organisation and visualisation. Neural Networks, in press.
    • Neural Networks
    • Freeman, R.1    Yin, H.2
  • 18
    • 4444231365 scopus 로고    scopus 로고
    • A survey of kernels for structured data
    • T. Gärtner. A survey of kernels for structured data. SIGKDD explorations, 2003.
    • (2003) SIGKDD Explorations
    • Gärtner, T.1
  • 20
    • 84898983549 scopus 로고    scopus 로고
    • Hierarchical clustering of a mixture model
    • In L. K. Saul, Y. Weiss, and L. Bottou, editors, MIT Press, Cambridge, MA
    • J. Goldberger and S. Roweis. Hierarchical clustering of a mixture model. In L. K. Saul, Y. Weiss, and L. Bottou, editors, Advances in Neural Information Processing Systems 17. MIT Press, Cambridge, MA, 2005.
    • (2005) Advances In Neural Information Processing Systems , pp. 17
    • Goldberger, J.1    Roweis, S.2
  • 21
    • 0344972928 scopus 로고    scopus 로고
    • Self-organizing maps: Generalizations and new optimization techniques
    • T. Graepel, M. Burger, and K. Obermayer. Self-organizing maps: generalizations and new optimization techniques. Neurocomputing, 21(1-3):173-90, 1998.
    • (1998) Neurocomputing , vol.21 , Issue.1-3 , pp. 173-190
    • Graepel, T.1    Burger, M.2    Obermayer, K.3
  • 22
    • 0032602777 scopus 로고    scopus 로고
    • A stochastic self organizing map for proximity data
    • T. Graepel and K. Obermayer. A stochastic self organizing map for proximity data. NeuralComputation, 11:139-155, 1999.
    • (1999) NeuralComputation , vol.11 , pp. 139-155
    • Graepel, T.1    Obermayer, K.2
  • 23
    • 0036191654 scopus 로고    scopus 로고
    • Self-organizing map for clustering in the graph domain
    • S. Günter and H. Bunke. Self-organizing map for clustering in the graph domain. Pattern Recognition Letters, 23:401-417, 2002.
    • (2002) Pattern Recognition Letters , vol.23 , pp. 401-417
    • Günter, S.1    Bunke, H.2
  • 24
    • 84898964855 scopus 로고    scopus 로고
    • Result analysis of the nips 2003 feature selection challenge
    • In L. K. Saul, Y. Weiss, and L. Bottou, editors, MIT Press, Cambridge, MA
    • I. Guyon, S. Gunn, A. Ben-Hur, and G. Dror. Result analysis of the nips 2003 feature selection challenge. In L. K. Saul, Y. Weiss, and L. Bottou, editors, Advances in Neural Information Processing Systems 17. MIT Press, Cambridge, MA, 2005.
    • (2005) Advances In Neural Information Processing Systems , pp. 17
    • Guyon, I.1    Gunn, S.2    Ben-Hur, A.3    Dror, G.4
  • 28
    • 1542786232 scopus 로고    scopus 로고
    • A general framework for unsupervised processing of structured data
    • B. Hammer, A. Micheli, A. Sperduti, and M. Strickert. A general framework for unsupervised processing of structured data. Neurocomputing, 57:3-35, 2004.
    • (2004) Neurocomputing , vol.57 , pp. 3-35
    • Hammer, B.1    Micheli, A.2    Sperduti, A.3    Strickert, M.4
  • 31
    • 18544384330 scopus 로고    scopus 로고
    • Prototype based recognition of splice sites
    • U. Seiffert, L. Jain, and P. Schweitzer, editors, Springer-Verlag
    • B. Hammer, M. Strickert, and T. Villmann. Prototype based recognition of splice sites. In U. Seiffert, L. Jain, and P. Schweitzer, editors, Bioinformatic using Computational Intelligence Paradigms, pages 25-56. Springer-Verlag, 2005.
    • (2005) Bioinformatic Using Computational Intelligence Paradigms , pp. 25-56
    • Hammer, B.1    Strickert, M.2    Villmann, T.3
  • 32
    • 12844250052 scopus 로고    scopus 로고
    • Supervised neural gas with general similarity measure
    • B. Hammer, M. Strickert, and T. Villmann. Supervised neural gas with general similarity measure. Neural Processing Letters, 21(1):21-44, 2005.
    • (2005) Neural Processing Letters , vol.21 , Issue.1 , pp. 21-44
    • Hammer, B.1    Strickert, M.2    Villmann, T.3
  • 33
    • 0036791938 scopus 로고    scopus 로고
    • Generalized relevance learning vector quantization
    • B. Hammer and T. Villmann. Generalized relevance learning vector quantization. Neural Networks, 15(8-9):1059-1068, 2002.
    • (2002) Neural Networks , vol.15 , Issue.8-9 , pp. 1059-1068
    • Hammer, B.1    Villmann, T.2
  • 34
    • 0030449297 scopus 로고    scopus 로고
    • Kohonen map as a visualization tool for the analysis of protein sequences: Multiple alignments, domains and segments of secondary structures
    • J. Hanke and J. Reich. Kohonen map as a visualization tool for the analysis of protein sequences: multiple alignments, domains and segments of secondary structures. Computer Applications in the Biosciences, 12(6):447-454, 1996.
    • (1996) Computer Applications In the Biosciences , vol.12 , Issue.6 , pp. 447-454
    • Hanke, J.1    Reich, J.2
  • 35
    • 9144247917 scopus 로고    scopus 로고
    • Plastic mine detecting radar system using complex-valued selforganizing map that deals with multiple-frequency interferometric images
    • T. Hara and A. Hirose. Plastic mine detecting radar system using complex-valued selforganizing map that deals with multiple-frequency interferometric images. Neural Networks, 17:1201-1210.
    • Neural Networks , vol.17 , pp. 1201-1210
    • Hara, T.1    Hirose, A.2
  • 36
    • 0002059002 scopus 로고    scopus 로고
    • Energy functions for self-organizing maps
    • In E. Oja and S. Kaski, editors, Elsevier, Amsterdam
    • T. Heskes. Energy functions for self-organizing maps. In E. Oja and S. Kaski, editors, Kohonen Maps, pages 303-316. Elsevier, Amsterdam, 1999.
    • (1999) Kohonen Maps , pp. 303-316
    • Heskes, T.1
  • 37
    • 0035506768 scopus 로고    scopus 로고
    • Self-organizing maps, vector quantization, and mixture modeling
    • November
    • T. Heskes. Self-organizing maps, vector quantization, and mixture modeling. IEEE Transactions on Neural Networks, 12(6):1299-1305, November 2001.
    • (2001) IEEE Transactions On Neural Networks , vol.12 , Issue.6 , pp. 1299-1305
    • Heskes, T.1
  • 46
    • 0036790769 scopus 로고    scopus 로고
    • How to make large self-organizing maps for nonvectorial data
    • T. Kohonen and P. Somervuo. How to make large self-organizing maps for nonvectorial data. Neural Networks, 15(8-9):945-952, 2002.
    • (2002) Neural Networks , vol.15 , Issue.8-9 , pp. 945-952
    • Kohonen, T.1    Somervuo, P.2
  • 47
    • 0041775676 scopus 로고    scopus 로고
    • Diffusion kernels on graphs and other discrete input spaces
    • R. Kondor and J. Lafferty. Diffusion kernels on graphs and other discrete input spaces. In ICML. 2002.
    • (2002) ICML
    • Kondor, R.1    Lafferty, J.2
  • 51
    • 1542680971 scopus 로고    scopus 로고
    • Nonlinear projection with curvilinear distances: Isomap versus curvilinear distance analysis
    • J. Lee, A. Lendasse, and M. Verleysen. Nonlinear projection with curvilinear distances: Isomap versus curvilinear distance analysis. Neurocomputing, 57:49-67, 2004.
    • (2004) Neurocomputing , vol.57 , pp. 49-67
    • Lee, J.1    Lendasse, A.2    Verleysen, M.3
  • 52
    • 84886992486 scopus 로고    scopus 로고
    • Nonlinear dimensionality reduction of data manifolds with essential loops
    • to appear
    • J. Lee and M. Verleysen. Nonlinear dimensionality reduction of data manifolds with essential loops. Neurocomputing, to appear.
    • Neurocomputing
    • Lee, J.1    Verleysen, M.2
  • 53
    • 84886992486 scopus 로고    scopus 로고
    • Nonlinear dimensionality reduction of data manifolds with essential loops
    • to appear
    • J. Lee and M. Verleysen. Nonlinear dimensionality reduction of data manifolds with essential loops. Neurocomputing, to appear.
    • Neurocomputing
    • Lee, J.1    Verleysen, M.2
  • 54
    • 85156187897 scopus 로고    scopus 로고
    • Mismatch string kernels for svm protein classification
    • C. Leslie, E. Eskin, J. Weston, and W. Noble. Mismatch string kernels for svm protein classification. In NIPS. 2002.
    • (2002) NIPS
    • Leslie, C.1    Eskin, E.2    Weston, J.3    Noble, W.4
  • 55
    • 0000353243 scopus 로고
    • How to generate maps by maximizing the mutual information between input and output signals
    • R. Linsker. How to generate maps by maximizing the mutual information between input and output signals. Neural Computation, 1:402-411, 1989.
    • (1989) Neural Computation , vol.1 , pp. 402-411
    • Linsker, R.1
  • 57
    • 0027632248 scopus 로고
    • 'Neural-gas' network for vector quantization and its application to time-series prediction
    • T. M. Martinetz, S. G. Berkovich, and K. J. Schulten.'Neural-gas' network for vector quantization and its application to time-series prediction. IEEE Trans. on Neural Networks, 4(4):558-569, 1993.
    • (1993) IEEE Trans. On Neural Networks , vol.4 , Issue.4 , pp. 558-569
    • Martinetz, T.M.1    Berkovich, S.G.2    Schulten, K.J.3
  • 58
    • 0036066020 scopus 로고    scopus 로고
    • Curved feature metrics in models of visual cortex
    • N. Mayer, J. M. Herrmann, and T. Geisel. Curved feature metrics in models of visual cortex. Neurocomputing, 44-46:533-539, 2000.
    • (2000) Neurocomputing , vol.44-46 , pp. 533-539
    • Mayer, N.1    Herrmann, J.M.2    Geisel, T.3
  • 59
    • 35048854253 scopus 로고    scopus 로고
    • Modelling and clusterig of gene expressions using RBFs and and a shape similarity metric
    • C. Moller-Levet and H. Yin. Modelling and clusterig of gene expressions using RBFs and and a shape similarity metric. In Lecture Notes in Computer Science, volume 3177, pages 1-10. 2004.
    • (2004) Lecture Notes In Computer Science , vol.3177 , pp. 1-10
    • Moller-Levet, C.1    Yin, H.2
  • 60
    • 10944227262 scopus 로고    scopus 로고
    • Modelling gene expression time-series with radial basis function neural networks
    • C. Moller-Levet, H. Yin, K.-H. Cho, and O. Wolkenhauer. Modelling gene expression time-series with radial basis function neural networks. In IJCNN'04, pages 1191-1196. 2004.
    • (2004) IJCNN'04 , pp. 1191-1196
    • Moller-Levet, C.1    Yin, H.2    Cho, K.-H.3    Wolkenhauer, O.4
  • 62
    • 9144260753 scopus 로고    scopus 로고
    • Improved learning odf Riemannian metrics for exploratory data analysis
    • J. Peltonen, A. Klami, and S. Kaski. Improved learning odf Riemannian metrics for exploratory data analysis. Neural Networks, 17:1087-1100, 2004.
    • (2004) Neural Networks , vol.17 , pp. 1087-1100
    • Peltonen, J.1    Klami, A.2    Kaski, S.3
  • 63
    • 15844393601 scopus 로고    scopus 로고
    • Clustering functional data with the SOM algorithm
    • M. Verleysen, editor, de side publications
    • F. Rossi, B. Conan-Guez, and A. El Golli. Clustering functional data with the SOM algorithm. In M. Verleysen, editor, Proc. ESANN'04, pages 305-312. de side publications, 2004.
    • (2004) Proc. ESANN'04 , pp. 305-312
    • Rossi, F.1    Conan-Guez, B.2    Golli, A.E.3
  • 66
    • 85156210800 scopus 로고    scopus 로고
    • Generalized learning vector quantization
    • In D. S. Touretzky, M. C. Mozer, and M. E. Hasselmo, editors, MIT Press, Cambridge, MA, USA
    • A. Sato and K. Yamada. Generalized learning vector quantization. In D. S. Touretzky, M. C. Mozer, and M. E. Hasselmo, editors, Advances in Neural Information Processing Systems 8. Proceedings of the 1995 Conference, pages 423-9. MIT Press, Cambridge, MA, USA, 1996.
    • (1996) Advances In Neural Information Processing Systems 8. Proceedings of the 1995 Conference , pp. 423-429
    • Sato, A.1    Yamada, K.2
  • 68
    • 0038159964 scopus 로고    scopus 로고
    • Soft learning vector quantization
    • S. Seo and K. Obermayer. Soft learning vector quantization. Neural Computation, 15:1589-1604, 2003.
    • (2003) Neural Computation , vol.15 , pp. 1589-1604
    • Seo, S.1    Obermayer, K.2
  • 69
    • 9144234927 scopus 로고    scopus 로고
    • Self-organizing maps and clustering methods for matrix data
    • S. Seo and K. Obermayer. Self-organizing maps and clustering methods for matrix data. Neural Networks, 17:1211-1230, 2004.
    • (2004) Neural Networks , vol.17 , pp. 1211-1230
    • Seo, S.1    Obermayer, K.2
  • 70
    • 0036133934 scopus 로고    scopus 로고
    • Clustering based on conditional distributions in an auxiliary space
    • J. Sinkkonen and S. Kaski. Clustering based on conditional distributions in an auxiliary space. Neural Computation, 14:217-239, 2002.
    • (2002) Neural Computation , vol.14 , pp. 217-239
    • Sinkkonen, J.1    Kaski, S.2
  • 71
    • 9144222224 scopus 로고    scopus 로고
    • Online algorithm for the self-organizing map of symbol strings
    • P. J. Somervuo. Online algorithm for the self-organizing map of symbol strings. Neural Networks, 17:1231-1240, 2004.
    • (2004) Neural Networks , vol.17 , pp. 1231-1240
    • Somervuo, P.J.1
  • 75
    • 84887007316 scopus 로고    scopus 로고
    • Kernels for structured natural language data
    • J. Suzuki, Y. Sasaki, and E. Maeda. Kernels for structured natural language data. In NIPS. 2003.
    • (2003) NIPS
    • Suzuki, J.1    Sasaki, Y.2    Maeda, E.3
  • 77
    • 1942450610 scopus 로고    scopus 로고
    • Feature extraction by non-parametric mutual information maximization
    • K. Torkkola. Feature extraction by non-parametric mutual information maximization. Journal of Machine Learning Research, 3:1415-1438, 2003.
    • (2003) Journal of Machine Learning Research , vol.3 , pp. 1415-1438
    • Torkkola, K.1
  • 79
    • 2342585524 scopus 로고    scopus 로고
    • The EM algorithm for kernel matrix completion with auxiliary data
    • K. Tsuda, S. Akaho, and K. Asai. The EM algorithm for kernel matrix completion with auxiliary data. Journal of Machine LEarning Research, 4:67-81, 2003.
    • (2003) Journal of Machine LEarning Research , vol.4 , pp. 67-81
    • Tsuda, K.1    Akaho, S.2    Asai, K.3
  • 80
    • 4344601990 scopus 로고    scopus 로고
    • Recognition invariance obtained by extended and invariant features
    • S. Ullmann and E. Bart. Recognition invariance obtained by extended and invariant features. Neural Networks, 17:833-848, 2004.
    • (2004) Neural Networks , vol.17 , pp. 833-848
    • Ullmann, S.1    Bart, E.2
  • 83
    • 0344541989 scopus 로고    scopus 로고
    • Applications of the growing self-organizing map
    • T. Villmann and H.-U. Bauer. Applications of the growing self-organizing map. Neurocomputing, 21(1-3):91-100, 1998.
    • (1998) Neurocomputing , vol.21 , Issue.1-3 , pp. 91-100
    • Villmann, T.1    Bauer, H.-U.2
  • 84
    • 33845581946 scopus 로고    scopus 로고
    • Comparison of relevance learning vector quantization with other metric adaptive classification methods
    • T. Villmann, F. M. Schleif, and B. Hammer. Comparison of relevance learning vector quantization with other metric adaptive classification methods. Neural Networks, submitted.
    • Neural Networks
    • Villmann, T.1    Schleif, F.M.2    Hammer, B.3
  • 86
    • 85040242730 scopus 로고    scopus 로고
    • Fast kernels for string and tree matching
    • S. Vishwanathan and A. Smola. Fast kernels for string and tree matching. In NIPS. 2002.
    • (2002) NIPS
    • Vishwanathan, S.1    Smola, A.2
  • 87
    • 1542535929 scopus 로고    scopus 로고
    • Recursive self-organising maps
    • N. Allinson, H. Yin, L. Allinson, and J. Slack, editors, Springer
    • T. Voegtlin and P. F. Dominey. Recursive self-organising maps. In N. Allinson, H. Yin, L. Allinson, and J. Slack, editors, Advances in Self-Organising Maps, pages 210-215. Springer, 2001.
    • (2001) Advances In Self-Organising Maps , pp. 210-215
    • Voegtlin, T.1    Dominey, P.F.2
  • 88
    • 0029669421 scopus 로고    scopus 로고
    • Invariant pattern recognition: A review
    • J. Wood. Invariant pattern recognition: A review. Pattern Recognition, 29:1-17, 1996.
    • (1996) Pattern Recognition , vol.29 , pp. 1-17
    • Wood, J.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.