메뉴 건너뛰기




Volumn 3853 LNCS, Issue , 2006, Pages 141-159

Perspectives of self-adapted self-organizing clustering in organic computing

Author keywords

[No Author keywords available]

Indexed keywords

ORGANIC COMPUTING; SELF-ORGANIZING CLUSTERING; TAXONOMY;

EID: 33744929852     PISSN: 03029743     EISSN: 16113349     Source Type: Book Series    
DOI: 10.1007/11613022_14     Document Type: Conference Paper
Times cited : (2)

References (128)
  • 1
    • 0025225150 scopus 로고
    • Competitive learning algorithms for vector quantization
    • S. C. Ahalt, A. K. Krishnamurty, P. Chen, and D. E. Melton. Competitive learning algorithms for vector quantization. Neural Networks, 3(3):277-290, 1990.
    • (1990) Neural Networks , vol.3 , Issue.3 , pp. 277-290
    • Ahalt, S.C.1    Krishnamurty, A.K.2    Chen, P.3    Melton, D.E.4
  • 3
    • 0026898892 scopus 로고
    • Quantifying the neighborhood preservation of Self-organizing feature maps
    • H.-U. Bauer and K. R. Pawelzik. Quantifying the neighborhood preservation of Self-Organizing Feature Maps. IEEE Trans. on Neural Networks, 3(4):570-579, 1992.
    • (1992) IEEE Trans. on Neural Networks , vol.3 , Issue.4 , pp. 570-579
    • Bauer, H.-U.1    Pawelzik, K.R.2
  • 4
    • 0031101545 scopus 로고    scopus 로고
    • Growing a hypercubical output space in a self-organizing feature map
    • H. U. Bauer and T. Villmann. Growing a hypercubical output space in a self-organizing feature map. IEEE Transactions on Neural Networks, 8(2):218-26, 1997.
    • (1997) IEEE Transactions on Neural Networks , vol.8 , Issue.2 , pp. 218-226
    • Bauer, H.U.1    Villmann, T.2
  • 6
    • 0344110441 scopus 로고    scopus 로고
    • Developments of the generative topographic mapping
    • C. Bishop, M. Svensen, and C. Williams. Developments of the generative topographic mapping. Neurocomputing, 21(1):203-224, 1998.
    • (1998) Neurocomputing , vol.21 , Issue.1 , pp. 203-224
    • Bishop, C.1    Svensen, M.2    Williams, C.3
  • 8
    • 33744898919 scopus 로고    scopus 로고
    • Determining relevant input dimensions for the self-organizing map
    • L. Rutkowski and J. Kacprzyk, editors, Advances in Soft Computing, Physica-Verlag
    • T. Bojer, B. Hammer, M. Strickert, and T. Villmann. Determining relevant input dimensions for the self-organizing map. In L. Rutkowski and J. Kacprzyk, editors, Neural Networks and Soft Computing (Proc. ICNNSC 2002), Advances in Soft Computing, pages 388-393. Physica-Verlag, 2003.
    • (2003) Neural Networks and Soft Computing (Proc. ICNNSC 2002) , pp. 388-393
    • Bojer, T.1    Hammer, B.2    Strickert, M.3    Villmann, T.4
  • 9
    • 0142214892 scopus 로고    scopus 로고
    • Experiments on graph clustering algorithms
    • U. Brandes, M. Gaertler, and D. Wagner. Experiments on graph clustering algorithms. In ESA 2003, pages 568-579, 2003.
    • (2003) ESA 2003 , pp. 568-579
    • Brandes, U.1    Gaertler, M.2    Wagner, D.3
  • 11
    • 12144252496 scopus 로고    scopus 로고
    • Magnification control in winner relaxing neural gas
    • J. Claussen and T. Villmann. Magnification control in winner relaxing neural gas. Neurocomputing, 63(1):125-137, 2005.
    • (2005) Neurocomputing , vol.63 , Issue.1 , pp. 125-137
    • Claussen, J.1    Villmann, T.2
  • 12
    • 0345404393 scopus 로고    scopus 로고
    • Theoretical aspects of the SOM algorithm
    • M. Cottrell, J. Fort, and G. Pages. Theoretical aspects of the SOM algorithm. Neurocomputing, 21(1):119-138, 1998.
    • (1998) Neurocomputing , vol.21 , Issue.1 , pp. 119-138
    • Cottrell, M.1    Fort, J.2    Pages, G.3
  • 13
    • 0022576674 scopus 로고
    • A stochastic model of retinotopy: A self-organizing process
    • M. Cottrell and J. C. Fort. A stochastic model of retinotopy: a self-organizing process. Biological Cybernetics, 53:405-411, 1986.
    • (1986) Biological Cybernetics , vol.53 , pp. 405-411
    • Cottrell, M.1    Fort, J.C.2
  • 14
    • 84980012071 scopus 로고
    • Analysing a contingency table with kohonen maps: A factorial correspondence analysis
    • M. Cottrell, P. Letremy, and E. Roy. Analysing a contingency table with kohonen maps: A factorial correspondence analysis. In IWANN 1993, pages 305-311, 1993.
    • (1993) IWANN 1993 , pp. 305-311
    • Cottrell, M.1    Letremy, P.2    Roy, E.3
  • 17
    • 0024123145 scopus 로고
    • Adding a conscience to competitive learning
    • Piscataway, NJ, IEEE Service Center
    • D. DeSieno. Adding a conscience to competitive learning. In Proc. ICNN'88, Internat. Conf. on Neural Networks, pages 117-124, Piscataway, NJ, 1988. IEEE Service Center.
    • (1988) Proc. ICNN'88, Internat. Conf. on Neural Networks , pp. 117-124
    • DeSieno, D.1
  • 18
    • 0011812645 scopus 로고    scopus 로고
    • Recent advances with the growing hierarchical self-organizing map
    • Lincoln, England
    • M. Dittenbach, A. Rauber, and D. Merkl. Recent advances with the growing hierarchical self-organizing map. In Proc. 3rd Workshop on Self-Organizing Maps, pages 140-145, Lincoln, England, 2001.
    • (2001) Proc. 3rd Workshop on Self-organizing Maps , pp. 140-145
    • Dittenbach, M.1    Rauber, A.2    Merkl, D.3
  • 24
    • 0028748949 scopus 로고
    • Growing cell structures - A self-organizing network for unsupervised and supervised learning
    • B. Fritzke. Growing cell structures - a self-organizing network for unsupervised and supervised learning. Neural Networks, 7(9): 1441-1460, 1994.
    • (1994) Neural Networks , vol.7 , Issue.9 , pp. 1441-1460
    • Fritzke, B.1
  • 25
    • 85135470835 scopus 로고
    • A growing neural gas network learns topologies
    • G. Tesauro, D. S. Touretzky, and T. K. Leen, editors, Cambridge MA, MIT Press
    • B. Fritzke. A growing neural gas network learns topologies. In G. Tesauro, D. S. Touretzky, and T. K. Leen, editors, Advances in Neuralm Information Processing Systems 7, pages 625-632, Cambridge MA, 1995. MIT Press.
    • (1995) Advances in Neuralm Information Processing Systems 7 , pp. 625-632
    • Fritzke, B.1
  • 26
    • 0031069945 scopus 로고    scopus 로고
    • The LBG-U method for vector quantization - An improvement over LBG inspired from neural networks
    • B. Fritzke. The LBG-U method for vector quantization - an improvement over LBG inspired from neural networks. Neural Processing Letters, 5(1):35-45, 1997.
    • (1997) Neural Processing Letters , vol.5 , Issue.1 , pp. 35-45
    • Fritzke, B.1
  • 27
    • 84956615237 scopus 로고    scopus 로고
    • A self-organizing network that can follow non-stationary distributions
    • W. Gerstener, A. Germond, M. Hasler, and J.-D. Nicoud, editors, LNCS 1327, Springer Verlag Berlin Heidelberg
    • B. Fritzke. A self-organizing network that can follow non-stationary distributions. In W. Gerstener, A. Germond, M. Hasler, and J.-D. Nicoud, editors, Artificial Neural Networks - Proceedings of International Conference on Artificial Neural Networks (ICANN'97) Lausanne, pages 613-618. LNCS 1327, Springer Verlag Berlin Heidelberg, 1997.
    • (1997) Artificial Neural Networks - Proceedings of International Conference on Artificial Neural Networks (ICANN'97) Lausanne , pp. 613-618
    • Fritzke, B.1
  • 29
    • 84921893064 scopus 로고
    • Learning with preknowledge: Clustering with point and graph matching distance measures
    • S. Gold, A. Rangarajan, and E. Mjolness. Learning with preknowledge: clustering with point and graph matching distance measures. In NIPS, 1995.
    • (1995) NIPS
    • Gold, S.1    Rangarajan, A.2    Mjolness, E.3
  • 30
    • 0032602777 scopus 로고    scopus 로고
    • A stochastic self organizing map for proximity data
    • T. Graepel and K. Obermayer. A stochastic self organizing map for proximity data. NeuralComputation, 11:139-155, 1999.
    • (1999) NeuralComputation , vol.11 , pp. 139-155
    • Graepel, T.1    Obermayer, K.2
  • 31
    • 0017120827 scopus 로고
    • Adaptive pattern classification and universal recoding: I. Parallel development and coding of neural feature detectors
    • S. Grossberg. Adaptive pattern classification and universal recoding: I. parallel development and coding of neural feature detectors. Biological Cybernetics, 23:121-134, 1976.
    • (1976) Biological Cybernetics , vol.23 , pp. 121-134
    • Grossberg, S.1
  • 32
    • 0032965064 scopus 로고    scopus 로고
    • A self organizing neural system for learning to recognize textured scenes
    • S. Grossberg and J. R. Williamson. A self organizing neural system for learning to recognize textured scenes. Vision Research, 39:1385-1406, 1999.
    • (1999) Vision Research , vol.39 , pp. 1385-1406
    • Grossberg, S.1    Williamson, J.R.2
  • 33
    • 0030825540 scopus 로고    scopus 로고
    • Parallel design and implementation of SOM neural computing models in PVM environment of a distributed system
    • H. Guan, C. Li, T. Cheung, and S. Yu. Parallel design and implementation of SOM neural computing models in PVM environment of a distributed system. In Advances in Parallel and Distributed Computing, pages 26-31. 1997.
    • (1997) Advances in Parallel and Distributed Computing , pp. 26-31
    • Guan, H.1    Li, C.2    Cheung, T.3    Yu, S.4
  • 34
    • 0036191654 scopus 로고    scopus 로고
    • Self-organizing map for clustering in the graph domain
    • S. Günter and H. Bunke. Self-organizing map for clustering in the graph domain. Pattern Recognition Letters, 23:401-417, 2002.
    • (2002) Pattern Recognition Letters , vol.23 , pp. 401-417
    • Günter, S.1    Bunke, H.2
  • 37
    • 0031145072 scopus 로고    scopus 로고
    • Mapping of SOM and LVQ algorithms on a tree shape parallel computer system
    • T Hämäläinen, H. Klapuri, J. Saarinen, and K. Kaski. Mapping of SOM and LVQ algorithms on a tree shape parallel computer system. Parallel Computing, 23:271-289, 1997.
    • (1997) Parallel Computing , vol.23 , pp. 271-289
    • Hämäläinen, T.1    Klapuri, H.2    Saarinen, J.3    Kaski, K.4
  • 38
    • 0035008798 scopus 로고    scopus 로고
    • Life-long learning cell structures - Continously learning without catastrophic inference
    • F. Hamker. Life-long learning cell structures - continously learning without catastrophic inference. Neural Networks, 14:551-573, 2001.
    • (2001) Neural Networks , vol.14 , pp. 551-573
    • Hamker, F.1
  • 39
    • 0042099958 scopus 로고    scopus 로고
    • Lecture Notes in Control Theory and Information Sciences. Springer
    • B. Hammer. Learning with Recurrent Neural Networks. Lecture Notes in Control Theory and Information Sciences. Springer, 2000.
    • (2000) Learning with Recurrent Neural Networks
    • Hammer, B.1
  • 40
    • 0002651550 scopus 로고    scopus 로고
    • Compositionality in neural systems
    • M. Arbib, editor, MIT Press, 2nd edition
    • B. Hammer. Compositionality in neural systems. In M. Arbib, editor, Handbook of Brain Theory and Neural Networks, pages 244-248. MIT Press, 2nd edition, 2002.
    • (2002) Handbook of Brain Theory and Neural Networks , pp. 244-248
    • Hammer, B.1
  • 41
    • 0042708923 scopus 로고    scopus 로고
    • Recurrent neural networks for structured data - A unifying approach and its properties
    • B. Hammer. Recurrent neural networks for structured data - a unifying approach and its properties. Cognitive Systems Research, 3(2): 145-165, 2002.
    • (2002) Cognitive Systems Research , vol.3 , Issue.2 , pp. 145-165
    • Hammer, B.1
  • 42
    • 33646588491 scopus 로고    scopus 로고
    • Perspectives on learning symbolic data with connectionistic systems
    • R. Kühn, R. Menzel, W. Menzel, U. Ratsch, M. Richter, and I. Stamatescu, editors, Springer
    • B. Hammer. Perspectives on learning symbolic data with connectionistic systems. In R. Kühn, R. Menzel, W. Menzel, U. Ratsch, M. Richter, and I. Stamatescu, editors, Adaptivity and Learning, pages 141-160. Springer, 2003.
    • (2003) Adaptivity and Learning , pp. 141-160
    • Hammer, B.1
  • 43
    • 9144271543 scopus 로고    scopus 로고
    • Neural methods for non-standard data
    • M. Verleysen, editor, D-side publications
    • B. Hammer and B. Jain. Neural methods for non-standard data. In M. Verleysen, editor, ESANN'2004, pages 281-292. D-side publications, 2004.
    • (2004) ESANN'2004 , pp. 281-292
    • Hammer, B.1    Jain, B.2
  • 44
    • 1542786232 scopus 로고    scopus 로고
    • A general framework for unsupervised processing of structured data
    • B. Hammer, A. Micheli, A. Sperduti, and M. Strickert. A general framework for unsupervised processing of structured data. Neurocomputing, 57:3-35, 2004.
    • (2004) Neurocomputing , vol.57 , pp. 3-35
    • Hammer, B.1    Micheli, A.2    Sperduti, A.3    Strickert, M.4
  • 48
    • 0036791938 scopus 로고    scopus 로고
    • Generalized relevance learning vector quantization
    • B. Hammer and T. Villmann. Generalized relevance learning vector quantization. Neural Networks, 15(8-9):1059-1068, 2002.
    • (2002) Neural Networks , vol.15 , Issue.8-9 , pp. 1059-1068
    • Hammer, B.1    Villmann, T.2
  • 49
    • 0030070062 scopus 로고    scopus 로고
    • Self-organizing hierarchic networks for pattern recognition in protein sequence
    • J. Hanke, G. Beckmann, P. Borck, and J. Reich. Self-organizing hierarchic networks for pattern recognition in protein sequence. Protein Sciences, 5(1):72-82, 1996.
    • (1996) Protein Sciences , vol.5 , Issue.1 , pp. 72-82
    • Hanke, J.1    Beckmann, G.2    Borck, P.3    Reich, J.4
  • 51
    • 4544297796 scopus 로고    scopus 로고
    • Novelty detection employing an 12 optimal nonparametric density estimator
    • C. He and M. Girolami. Novelty detection employing an 12 optimal nonparametric density estimator. Pattern Recognition Letters, 25(12): 1389-1397, 2004.
    • (2004) Pattern Recognition Letters , vol.25 , Issue.12 , pp. 1389-1397
    • He, C.1    Girolami, M.2
  • 52
    • 0035108235 scopus 로고    scopus 로고
    • A hierarchical unsupervised growing neural network for clustering gene expression patterns
    • J. Herrero, A. Valencia, and J. Dopazo. A hierarchical unsupervised growing neural network for clustering gene expression patterns. Bioinformatics, 17(2): 126-136, 2001.
    • (2001) Bioinformatics , vol.17 , Issue.2 , pp. 126-136
    • Herrero, J.1    Valencia, A.2    Dopazo, J.3
  • 53
    • 2342468465 scopus 로고
    • The 'perceptual magnet' effect: A model based on self-organizing feature maps
    • L. S. Smith and P. J. B. Hancock, editors, Stirling, Springer-Verlag
    • M. Herrmann, H.-U. Bauer, and R. Der. The 'perceptual magnet' effect: A model based on self-organizing feature maps. In L. S. Smith and P. J. B. Hancock, editors, Neural Computation and Psychology, pages 107-116, Stirling, 1994. Springer-Verlag.
    • (1994) Neural Computation and Psychology , pp. 107-116
    • Herrmann, M.1    Bauer, H.-U.2    Der, R.3
  • 54
    • 0035506768 scopus 로고    scopus 로고
    • Self-organizing maps, vector quantization, and mixture modeling
    • T. Heskes. Self-organizing maps, vector quantization, and mixture modeling. IEEE Transactions on Neural Networks, 12:1299-1305, 2001.
    • (2001) IEEE Transactions on Neural Networks , vol.12 , pp. 1299-1305
    • Heskes, T.1
  • 57
    • 84944315163 scopus 로고    scopus 로고
    • Evolution strategy with neighborhood attraction using a neural gas approach
    • J. Merelo, A. Panagiotis, and H.-G. Beyer, editors, LNCS 2439, Springer
    • J. Huhse, T. Villmann, P. Merz, and A. Zell. Evolution strategy with neighborhood attraction using a neural gas approach. In J. Merelo, A. Panagiotis, and H.-G. Beyer, editors, Parallel Problem Solving from Nature VII, LNCS 2439, p. 391-400. Springer, 2002.
    • (2002) Parallel Problem Solving from Nature VII , pp. 391-400
    • Huhse, J.1    Villmann, T.2    Merz, P.3    Zell, A.4
  • 60
    • 33744908399 scopus 로고    scopus 로고
    • Portable high performance fft algorithms
    • Vienna University of Technology
    • H. Karner and C. W. Ueberhuber. Portable high performance fft algorithms. Tech. Report AURORA TR1997-14, Vienna University of Technology, 1997.
    • (1997) Tech. Report AURORA TR1997-14
    • Karner, H.1    Ueberhuber, C.W.2
  • 64
    • 0036790769 scopus 로고    scopus 로고
    • How to make large self-organizing maps for nonvectorial data
    • T. Kohonen and P. Somervuo. How to make large self-organizing maps for nonvectorial data. Neural Networks, 15(8-9):945-952, 2002.
    • (2002) Neural Networks , vol.15 , Issue.8-9 , pp. 945-952
    • Kohonen, T.1    Somervuo, P.2
  • 65
    • 0038315145 scopus 로고    scopus 로고
    • Tree structured self-organizing maps
    • Elsevier
    • P. Koikkalainen. Tree structured self-organizing maps. In Kohonen Maps, pages 121-130. Elsevier, 1999.
    • (1999) Kohonen Maps , pp. 121-130
    • Koikkalainen, P.1
  • 66
    • 1542430810 scopus 로고
    • Mapping of som neural network algortihms to a general purpose parallel neurocomputer
    • P. Kotilainen, J. Saarinen, and K. Kaski. Mapping of som neural network algortihms to a general purpose parallel neurocomputer. In ICANN''1993, pages 1082-1087. 1993.
    • (1993) ICANN''1993 , pp. 1082-1087
    • Kotilainen, P.1    Saarinen, J.2    Kaski, K.3
  • 67
    • 0027574881 scopus 로고
    • Architecture adaptive algorithms
    • A. R. Krommer and C. W. Ueberhuber. Architecture adaptive algorithms. Parallel Computing, 19(4):409-435, 1993.
    • (1993) Parallel Computing , vol.19 , Issue.4 , pp. 409-435
    • Krommer, A.R.1    Ueberhuber, C.W.2
  • 69
    • 0034544567 scopus 로고    scopus 로고
    • PicSOM - Content-based image retrieval with self-organizing maps
    • J. Laaksonen, J. Koskela, S. Laakso, and E. Oja. PicSOM - content-based image retrieval with self-organizing maps. Pattern Recognition Letters, 21(13-14):1199-1207, 2000.
    • (2000) Pattern Recognition Letters , vol.21 , Issue.13-14 , pp. 1199-1207
    • Laaksonen, J.1    Koskela, J.2    Laakso, S.3    Oja, E.4
  • 70
    • 0003126317 scopus 로고
    • A general theory of classificatory sorting strategies
    • G. N. Lane and W. T. Williams. A general theory of classificatory sorting strategies. Computer Journal, 9:373-380, 1967.
    • (1967) Computer Journal , vol.9 , pp. 373-380
    • Lane, G.N.1    Williams, W.T.2
  • 71
    • 1542680971 scopus 로고    scopus 로고
    • Nonlinear projection with curvilinear distances: Isomap versus curvilinear distance analysis
    • J. Lee, A. Lendasse, and M. Verleysen. Nonlinear projection with curvilinear distances: Isomap versus curvilinear distance analysis. Neurocomputing, 57:49-76, 2004.
    • (2004) Neurocomputing , vol.57 , pp. 49-76
    • Lee, J.1    Lendasse, A.2    Verleysen, M.3
  • 72
    • 84902177938 scopus 로고    scopus 로고
    • Nonlinear projection with the isotop method
    • J. R. Dorronsoro, editor, Springer-Verlag
    • J. Lee and M. Verleysen. Nonlinear projection with the isotop method. In J. R. Dorronsoro, editor, ICANN 2002, pages 933-938. Springer-Verlag, 2002.
    • (2002) ICANN 2002 , pp. 933-938
    • Lee, J.1    Verleysen, M.2
  • 74
    • 8844269075 scopus 로고    scopus 로고
    • A dynamically growing self-organizing tree for hierarchical clustering gene expression profiles
    • to appear
    • F. Luo, L. Khan, F. Bastani, I.-L. Yen, and J. Zhou. A dynamically growing self-organizing tree for hierarchical clustering gene expression profiles. Bioinformatics, to appear, 2004.
    • (2004) Bioinformatics
    • Luo, F.1    Khan, L.2    Bastani, F.3    Yen, I.-L.4    Zhou, J.5
  • 75
    • 0027632248 scopus 로고
    • 'Neural gas' network for vector quantization and its application to time series prediction
    • T. Martinetz, S. Berkovich, and K. Schulten. 'Neural gas' network for vector quantization and its application to time series prediction. IEEE Transactions on Neural Networks, 4(4):558-569, 1993.
    • (1993) IEEE Transactions on Neural Networks , vol.4 , Issue.4 , pp. 558-569
    • Martinetz, T.1    Berkovich, S.2    Schulten, K.3
  • 77
    • 0029545806 scopus 로고
    • Parallel self-organizing maps for actual applications
    • G. Myklebust and J. G. Solheim. Parallel self-organizing maps for actual applications. In Proceedings ICNN'95, volume 2, pages 1054-1059, 1995.
    • (1995) Proceedings ICNN'95 , vol.2 , pp. 1054-1059
    • Myklebust, G.1    Solheim, J.G.2
  • 79
    • 10444266900 scopus 로고    scopus 로고
    • A reconfigurable SOM hardware architecture
    • M. Verleysen, editor, D-side publications
    • M. Porrmann, M. Franzmeier, H. Kalte, U. Witkowski, and U. Ruckert. A reconfigurable SOM hardware architecture. In M. Verleysen, editor, ESANN'2002 proceedings, pages 337-342. D-side publications, 2002.
    • (2002) ESANN'2002 Proceedings , pp. 337-342
    • Porrmann, M.1    Franzmeier, M.2    Kalte, H.3    Witkowski, U.4    Ruckert, U.5
  • 80
    • 0033896770 scopus 로고    scopus 로고
    • A theory of proximity based clustering: Structure detection by optimization
    • J. Puzicha, T. Hofmann, and J. Buhmann. A theory of proximity based clustering: Structure detection by optimization. Pattern Recognition, 33(4):617-634, 1999.
    • (1999) Pattern Recognition , vol.33 , Issue.4 , pp. 617-634
    • Puzicha, J.1    Hofmann, T.2    Buhmann, J.3
  • 82
    • 0001232417 scopus 로고
    • Parametrized Self-Organizing Maps for vision learning tasks
    • M. Marinaro and P. G. Morasso, editors, London, UK, Springer
    • H. Ritter. Parametrized Self-Organizing Maps for vision learning tasks. In M. Marinaro and P. G. Morasso, editors, Proc. ICANN'94, International Conference on Artificial Neural Networks, volume II, pages 803-810, London, UK, 1994. Springer.
    • (1994) Proc. ICANN'94, International Conference on Artificial Neural Networks , vol.2 , pp. 803-810
    • Ritter, H.1
  • 83
    • 0002129811 scopus 로고    scopus 로고
    • Self-organizing maps in non-euclidean spaces
    • E. Oja and S. Kaski, editors
    • H. Ritter. Self-organizing maps in non-euclidean spaces. In E. Oja and S. Kaski, editors, Kohonen Maps, pages 97-108. 1999.
    • (1999) Kohonen Maps , pp. 97-108
    • Ritter, H.1
  • 86
    • 33744932290 scopus 로고    scopus 로고
    • Growing multi-dimensional Self-Organizing Maps for motion detection
    • U. Seiffert and L. C. Jain, editors, Self-Organizing Neural Networks: Recent Advances and Applications, Springer-Verlag, Heidelberg, Germany
    • U. Seiffert. Growing multi-dimensional Self-Organizing Maps for motion detection. In U. Seiffert and L. C. Jain, editors, Self-Organizing Neural Networks: Recent Advances and Applications, volume 78 of Studies in Fuzziness and Soft Computing, pages 95-120. Springer-Verlag, Heidelberg, Germany, 2001.
    • (2001) Studies in Fuzziness and Soft Computing , vol.78 , pp. 95-120
    • Seiffert, U.1
  • 87
    • 1542488666 scopus 로고    scopus 로고
    • Artificial neural networks on massively parallel computer hardware
    • M. Verleysen, editor, Evere, Belgium, D-Side Publications
    • U. Seiffert. Artificial neural networks on massively parallel computer hardware. In M. Verleysen, editor, Proc. of the 10. European Symposium on Artificial Neural Networks ESANN 2002, pages 319-330, Evere, Belgium, 2002. D-Side Publications.
    • (2002) Proc. of the 10. European Symposium on Artificial Neural Networks ESANN 2002 , pp. 319-330
    • Seiffert, U.1
  • 88
    • 1542786199 scopus 로고    scopus 로고
    • Artificial neural networks on massively parallel computer hardware
    • March
    • U. Seiffert. Artificial neural networks on massively parallel computer hardware. Neurocomputing, 57:135-150, March 2004.
    • (2004) Neurocomputing , vol.57 , pp. 135-150
    • Seiffert, U.1
  • 89
    • 28844486015 scopus 로고    scopus 로고
    • Biologically inspired image compression in biomedical High-Throughput Screening
    • A. J. Ijspeert, D. Mange, M. Murata, and S. Nishio, editors, Lausanne, Switzerland, Jan Swiss Federal Institute of Technology (EPFL), EPFL
    • U. Seiffert. Biologically inspired image compression in biomedical High-Throughput Screening. In A. J. Ijspeert, D. Mange, M. Murata, and S. Nishio, editors, Bio-ADlT2004 On-Conference Proc., pages 185-196, Lausanne, Switzerland, Jan 2004. Swiss Federal Institute of Technology (EPFL), EPFL.
    • (2004) Bio-ADlT2004 On-conference Proc. , pp. 185-196
    • Seiffert, U.1
  • 90
    • 0031258506 scopus 로고    scopus 로고
    • Estimating motion parameters with three-dimensional self-organizing maps
    • U. Seiffert and B. Michaelis. Estimating motion parameters with three-dimensional Self-Organizing Maps. Information Sciences, 101:187-201, 1997.
    • (1997) Information Sciences , vol.101 , pp. 187-201
    • Seiffert, U.1    Michaelis, B.2
  • 92
    • 0242676165 scopus 로고    scopus 로고
    • Multi-dimensional Self-Organizing Maps on massively parallel hardware
    • N. Allinson, H. Yin, L. Allinson, and J. Slack, editors, London, U.K., Springer-Verlag
    • U. Seiffert and B. Michaelis. Multi-dimensional Self-Organizing Maps on massively parallel hardware. In N. Allinson, H. Yin, L. Allinson, and J. Slack, editors, Advances in Self-Organizing Maps: Proc. of the 3. Workshop on Self-Organizing Maps WSOM 2001, pages 160-166, London, U.K., 2001. Springer-Verlag.
    • (2001) Advances in Self-organizing Maps: Proc. of the 3. Workshop on Self-organizing Maps WSOM 2001 , pp. 160-166
    • Seiffert, U.1    Michaelis, B.2
  • 93
    • 9144234927 scopus 로고    scopus 로고
    • Self-organizing maps and clustering methods for matrix data
    • to appear
    • S. Seo and K. Obermayer. Self-organizing maps and clustering methods for matrix data. Neural Networks, to appear, 2004.
    • (2004) Neural Networks
    • Seo, S.1    Obermayer, K.2
  • 94
    • 0041803949 scopus 로고
    • Kohonen networks on transputers: Implementation and animation
    • Dordrecht, Netherlands, Kluwer
    • H. P. Siemon and A. Ultsch. Kohonen networks on transputers: implementation and animation. In Proc. INNC-90 Int. Neural Network Conf., pages 643-646, Dordrecht, Netherlands, 1990. Kluwer.
    • (1990) Proc. INNC-90 Int. Neural Network Conf. , pp. 643-646
    • Siemon, H.P.1    Ultsch, A.2
  • 95
    • 12144253167 scopus 로고    scopus 로고
    • Neural gas for sequences
    • M. Strickert and B. Hammer. Neural gas for sequences. In WSOM'03, pages 53-57, 2003.
    • (2003) WSOM'03 , pp. 53-57
    • Strickert, M.1    Hammer, B.2
  • 96
    • 15844384951 scopus 로고    scopus 로고
    • Self-organizing context learning
    • M. Verleysen, editor, D-side publications
    • M. Strickert and B. Hammer. Self-organizing context learning. In M. Verleysen, editor, ESANN'04, pages 39-44. D-side publications, 2004.
    • (2004) ESANN'04 , pp. 39-44
    • Strickert, M.1    Hammer, B.2
  • 99
    • 0242370915 scopus 로고    scopus 로고
    • Fiber: A general framework for auto-tuning software
    • A. Veidenbaum, K. Joe, H. Amano, and H. Aiso, editors, Heidelberg, Springer Verlag
    • K. Takahiro, K. Kise, H. Honda, and T. Yuba. Fiber: A general framework for auto-tuning software. In A. Veidenbaum, K. Joe, H. Amano, and H. Aiso, editors, Proceedings of The Fifth International Symposium on High Performance Computing, volume 2858, pages 146-159, Heidelberg, 2003. Springer Verlag.
    • (2003) Proceedings of the Fifth International Symposium on High Performance Computing , vol.2858 , pp. 146-159
    • Takahiro, K.1    Kise, K.2    Honda, H.3    Yuba, T.4
  • 100
    • 0036394984 scopus 로고    scopus 로고
    • Co-design of software and hardware to implement remote sensing algorithms
    • J. Theiler, J. Frigo, M. Gokhale, and J. J. Szymanski. Co-design of software and hardware to implement remote sensing algorithms. In Proc. SPIE, vol. 4480, pages 86-99, 2001.
    • (2001) Proc. SPIE , vol.4480 , pp. 86-99
    • Theiler, J.1    Frigo, J.2    Gokhale, M.3    Szymanski, J.J.4
  • 101
    • 0036565797 scopus 로고    scopus 로고
    • Hierarchical GTM: Constructing localized non-linear projection manifolds in a principled way
    • P. Tino and I. Nabney. Hierarchical GTM: constructing localized non-linear projection manifolds in a principled way. IEEE Transactions on Pattern Analysis and Machine Intelligence, 24(5):639-656, 2002.
    • (2002) IEEE Transactions on Pattern Analysis and Machine Intelligence , vol.24 , Issue.5 , pp. 639-656
    • Tino, P.1    Nabney, I.2
  • 103
    • 0002432308 scopus 로고
    • Kohonen's self organizing feature maps for exploratory data analysis
    • Kluwer
    • A. Ultsch and H. Siemon. Kohonen's self organizing feature maps for exploratory data analysis. In Proc. INNC'90, pages 305-308. Kluwer, 1990.
    • (1990) Proc. INNC'90 , pp. 305-308
    • Ultsch, A.1    Siemon, H.2
  • 106
    • 0348114429 scopus 로고    scopus 로고
    • Controlling strategies for the magnification factor in the neural gas network
    • T. Villmann. Controlling strategies for the magnification factor in the neural gas network. Neural Network World, 10(4):739-750, 2000.
    • (2000) Neural Network World , vol.10 , Issue.4 , pp. 739-750
    • Villmann, T.1
  • 107
    • 0344541989 scopus 로고    scopus 로고
    • Applications of the growing self-organizing map
    • T. Villmann and H.-U. Bauer. Applications of the growing self-organizing map. Neurocomputing, 21(1-3):91-100, 1998.
    • (1998) Neurocomputing , vol.21 , Issue.1-3 , pp. 91-100
    • Villmann, T.1    Bauer, H.-U.2
  • 108
    • 33644899424 scopus 로고    scopus 로고
    • Magnification control in self-organizing maps and neural gas
    • in press
    • T. Villmann and J. Claussen. Magnification control in self-organizing maps and neural gas. Neural Computation, 18(2): in press, 2006.
    • (2006) Neural Computation , vol.18 , Issue.2
    • Villmann, T.1    Claussen, J.2
  • 109
    • 0031097231 scopus 로고    scopus 로고
    • Topology preservation in self-organizing feature maps: Exact definition and measurement
    • T. Villmann, R. Der, M. Herrmann, and T. M. Martinetz. Topology preservation in self-organizing feature maps: exact definition and measurement. IEEE Transactions on Neural Networks, 8(2):256-266, 1997.
    • (1997) IEEE Transactions on Neural Networks , vol.8 , Issue.2 , pp. 256-266
    • Villmann, T.1    Der, R.2    Herrmann, M.3    Martinetz, T.M.4
  • 110
    • 0000368250 scopus 로고    scopus 로고
    • Variants of self-organizing maps for data mining and data visualization in medicine
    • T. Villmann, W. Hermann, and M. Geyer. Variants of self-organizing maps for data mining and data visualization in medicine. Neural Network World, 10(4):751-762, 2000.
    • (2000) Neural Network World , vol.10 , Issue.4 , pp. 751-762
    • Villmann, T.1    Hermann, W.2    Geyer, M.3
  • 113
    • 2142795771 scopus 로고    scopus 로고
    • Extensions and modifications of the Kohonen-SOM and applications in remote sensing image analysis
    • U. Seiffert and L. Jain, eds., Springer-Verlag, Heidelberg
    • T. Villmann and E. Merényi. Extensions and modifications of the Kohonen-SOM and applications in remote sensing image analysis. In U. Seiffert and L. Jain, eds., Self-Organizing Maps. Recent Advances and Applications, p. 121-145. Springer-Verlag, Heidelberg, 2001.
    • (2001) Self-organizing Maps. Recent Advances and Applications , pp. 121-145
    • Villmann, T.1    Merényi, E.2
  • 114
    • 0037379640 scopus 로고    scopus 로고
    • Neural maps in remote sensing image analysis
    • T. Villmann, E. Merényi, and B. Hammer. Neural maps in remote sensing image analysis. Neural Networks, 16(3-4):389-403, 2003.
    • (2003) Neural Networks , vol.16 , Issue.3-4 , pp. 389-403
    • Villmann, T.1    Merényi, E.2    Hammer, B.3
  • 117
    • 1542786198 scopus 로고    scopus 로고
    • Evolutionary algorithms with neighborhood cooperativness according neural maps
    • T. Villmann, B. Villmann, and V. Slowik. Evolutionary algorithms with neighborhood cooperativness according neural maps. Neurocomputing, 57:151-169, 2004.
    • (2004) Neurocomputing , vol.57 , pp. 151-169
    • Villmann, T.1    Villmann, B.2    Slowik, V.3
  • 118
    • 10844233503 scopus 로고    scopus 로고
    • A probabilistic framework for the hierarchic organisation and classification of document collections
    • A. Vinokourov and M. Girolami. A probabilistic framework for the hierarchic organisation and classification of document collections. Information Processing and Management, 2002.
    • (2002) Information Processing and Management
    • Vinokourov, A.1    Girolami, M.2
  • 119
    • 0036790884 scopus 로고    scopus 로고
    • Recursive self-organizing maps
    • T. Voegtlin. Recursive self-organizing maps. Neural Networks, 15(8-9):979-992, 2002.
    • (2002) Neural Networks , vol.15 , Issue.8-9 , pp. 979-992
    • Voegtlin, T.1
  • 120
    • 0015749493 scopus 로고
    • Self-organization of orientation sensitive cells in the striate cortex
    • C. von der Malsburg. Self-organization of orientation sensitive cells in the striate cortex. Kybernetik, 14:85-100, 1973.
    • (1973) Kybernetik , vol.14 , pp. 85-100
    • Von Der Malsburg, C.1
  • 122
    • 35248818210 scopus 로고    scopus 로고
    • Learning compatibitlity functions for feature binding and perceptual grouping
    • Springer Verlag
    • S. Weng and J. Steil. Learning compatibitlity functions for feature binding and perceptual grouping. In Proc. of ICANN/ICONIP 2003, pages 60-67. Springer Verlag, 2003.
    • (2003) Proc. of ICANN/ICONIP 2003 , pp. 60-67
    • Weng, S.1    Steil, J.2
  • 123
    • 0035258563 scopus 로고    scopus 로고
    • A competitive-layer model for feature binding and sensory segmentation
    • H. Wersing, J. J. Steil, and H. Ritter. A competitive-layer model for feature binding and sensory segmentation. Neural Computation, 13:357-387, 2001.
    • (2001) Neural Computation , vol.13 , pp. 357-387
    • Wersing, H.1    Steil, J.J.2    Ritter, H.3
  • 124
    • 0343462141 scopus 로고    scopus 로고
    • Automated empirical optimizations of software and the atlas project
    • C. Whaley, A. Petitet, and J. Dongarra. Automated empirical optimizations of software and the atlas project. Parallel Computing, 27(3):3-35, 2001.
    • (2001) Parallel Computing , vol.27 , Issue.3 , pp. 3-35
    • Whaley, C.1    Petitet, A.2    Dongarra, J.3
  • 125
    • 0031595301 scopus 로고    scopus 로고
    • Self-organizing tree growing network for classifying amino acids
    • H. Whang, J. Dopazo, and J. Carazo. Self-organizing tree growing network for classifying amino acids. Bioinformatics, 14:376-277, 1998.
    • (1998) Bioinformatics , vol.14 , pp. 376-1277
    • Whang, H.1    Dopazo, J.2    Carazo, J.3
  • 127
    • 0033307273 scopus 로고    scopus 로고
    • Parallel self-organization map using multiple stimuli
    • M. Yasunaga, K. Tominaga, and J. H. Kim. Parallel self-organization map using multiple stimuli. In Proceedings IJCNN'99, volume 2, pages 1127-1130, 1999.
    • (1999) Proceedings IJCNN'99 , vol.2 , pp. 1127-1130
    • Yasunaga, M.1    Tominaga, K.2    Kim, J.H.3
  • 128
    • 0242537441 scopus 로고    scopus 로고
    • Categorization of web pages and user clustering with mixtures of hidden markov models
    • A. Ypma and T. Heskes. Categorization of web pages and user clustering with mixtures of hidden markov models. In Proceedings WEBKDD'02, pages 31-43, 2002.
    • (2002) Proceedings WEBKDD'02 , pp. 31-43
    • Ypma, A.1    Heskes, T.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.