메뉴 건너뛰기




Volumn 11, Issue 3-4, 2009, Pages 194-201

Recent advances in data-driven modeling of remote sensing applications in hydrology

Author keywords

Artificial neural network; Hydrology; Inverse model; Rainfall; Remote sensing; Snow water equivalent

Indexed keywords


EID: 68949148992     PISSN: 14647141     EISSN: None     Source Type: Journal    
DOI: 10.2166/hydro.2009.036     Document Type: Article
Times cited : (15)

References (40)
  • 1
    • 0018677096 scopus 로고
    • The relationship between the fractional coverage of high cloud and rainfall accumulations during GATE over the B-scale array
    • Arkin, P. A. 1979 The relationship between the fractional coverage of high cloud and rainfall accumulations during GATE over the B-scale array. Mon. Weather Rev. 107, 1382-1387.
    • (1979) Mon. Weather Rev. , vol.107 , pp. 1382-1387
    • Arkin, P.A.1
  • 2
    • 0028684056 scopus 로고
    • The estimation of global monthly mean rainfall using infrared satellite data: The GOES precipitation index
    • Arkin, P. A., Joyce, R. & Janowiak, J. E. 1994 The estimation of global monthly mean rainfall using infrared satellite data: the GOES precipitation index. Remote Sens. Rev. 11, 107-124.
    • (1994) Remote Sens. Rev. , vol.11 , pp. 107-124
    • Arkin, P.A.1    Joyce, R.2    Janowiak, J.E.3
  • 4
    • 0034465949 scopus 로고    scopus 로고
    • Rainfall estimation from a combination of TRMM precipitation radar and GOES multispectral satellite imagery through the use of an artificial neural network
    • Bellerby, T., Todd, M., Kniveton, D. & Kidd, C. 2000 Rainfall estimation from a combination of TRMM precipitation radar and GOES multispectral satellite imagery through the use of an artificial neural network. J. Appl. Meteorol. 39, 2115-2128.
    • (2000) J. Appl. Meteorol. , vol.39 , pp. 2115-2128
    • Bellerby, T.1    Todd, M.2    Kniveton, D.3    Kidd, C.4
  • 6
    • 0033609637 scopus 로고    scopus 로고
    • Spatial modeling and prediction of snow-water equivalent using ground-based, airborne, and satellite snow data
    • Carroll, S. S., Carroll, T. R. & Poston, R. W. 1999 Spatial modeling and prediction of snow-water equivalent using ground-based, airborne, and satellite snow data. J. Geophys. Res. 104 (D16), 19623-19629.
    • (1999) J. Geophys. Res. , vol.104 , Issue.D16 , pp. 19623-19629
    • Carroll, S.S.1    Carroll, T.R.2    Poston, R.W.3
  • 7
    • 0002348938 scopus 로고
    • Nimbus-7 SMMR derived global snow cover parameters
    • Chang, A. T. C, Foster, J. L. & Hall, D. K. 1987 Nimbus-7 SMMR derived global snow cover parameters. Ann. Glaciol. 9, 39-44.
    • (1987) Ann. Glaciol. , vol.9 , pp. 39-44
    • Chang, A.T.C.1    Foster, J.L.2    Hall, D.K.3
  • 8
    • 0030428648 scopus 로고    scopus 로고
    • Effects of forest on the snow parameters derived from microwave measurements during the BOREAS winter field campaign
    • Chang, A. T. C, Foster, J. L. & Hall, D. K. 1996 Effects of forest on the snow parameters derived from microwave measurements during the BOREAS winter field campaign. Hydrol. Process. 10, 1565-1574.
    • (1996) Hydrol. Process , vol.10 , pp. 1565-1574
    • Chang, A.T.C.1    Foster, J.L.2    Hall, D.K.3
  • 11
    • 33846454693 scopus 로고    scopus 로고
    • Dynamic ANN for precipitation estimation and forecasting from radar observations
    • Chiang, Y. M., Chang, F. - J., Jou, B. J. -D. & Lin, P. -F. 2007 Dynamic ANN for precipitation estimation and forecasting from radar observations. J. Hydrol. 334, 250-261.
    • (2007) J. Hydrol. , vol.334 , pp. 250-261
    • Chiang, Y.M.1    Chang, F.-J.2    Jou, B.J.-D.3    Lin, P.-F.4
  • 12
    • 33845991513 scopus 로고    scopus 로고
    • Validation of improved TAMANN neural network for operational satellite-derived rainfall estimation in Africa
    • Coppola, E., Grimes, D. I. F., Verdecchia, M. & Visconti, G. 2006 Validation of improved TAMANN neural network for operational satellite-derived rainfall estimation in Africa. J. Appl. Meteorol. Climatol. 45, 1557-1572.
    • (2006) J. Appl. Meteorol. Climatol. , vol.45 , pp. 1557-1572
    • Coppola, E.1    Grimes, D.I.F.2    Verdecchia, M.3    Visconti, G.4
  • 13
    • 0031403191 scopus 로고    scopus 로고
    • Preliminary analysis of snow microwave radiometry using the SSM/I passive-microwave data: The case of La Grande River watershed (Quebec)
    • De Sève, D., Bernier, M., Fortin, J. -P. & Walker, A. 1997 Preliminary analysis of snow microwave radiometry using the SSM/I passive-microwave data: the case of La Grande River watershed (Quebec). Ann. Glaciol. 25, 353-361.
    • (1997) Ann. Glaciol. , vol.25 , pp. 353-361
    • De Sève, D.1    Bernier, M.2    Fortin, J.-P.3    Walker, A.4
  • 14
    • 45849129842 scopus 로고    scopus 로고
    • Combining artificial neural network models, geostatistics and passive microwave data for snow water equivalent retrieval and mapping
    • Evora, N. D., Tapsoba, D. & De Sève, D. 2008 Combining artificial neural network models, geostatistics and passive microwave data for snow water equivalent retrieval and mapping. IEEE Trans. Geosci. Remote Sens. 46, 1925-1939.
    • (2008) IEEE Trans. Geosci. Remote Sens. , vol.46 , pp. 1925-1939
    • Evora, N.D.1    Tapsoba, D.2    De Sève, D.3
  • 15
    • 0031277604 scopus 로고    scopus 로고
    • Comparison of snow mass estimates from a prototype passive microwave snow algorithm, a revised algorithm and snow depth climatology
    • Foster, J. L., Chang, A. T. C. & Hall, D. K. 1997 Comparison of snow mass estimates from a prototype passive microwave snow algorithm, a revised algorithm and snow depth climatology. Remote Sens. Environ. 62, 132-142.
    • (1997) Remote Sens. Environ. , vol.62 , pp. 132-142
    • Foster, J.L.1    Chang, A.T.C.2    Hall, D.K.3
  • 16
    • 0030110562 scopus 로고    scopus 로고
    • Passive microwave snow research at the Canadian High Arctic
    • Gan, T. Y. 1996 Passive microwave snow research at the Canadian High Arctic. Can. J. Remote Sens. 22, 36-44.
    • (1996) Can. J. Remote Sens. , vol.22 , pp. 36-44
    • Gan, T.Y.1
  • 19
    • 0842334546 scopus 로고    scopus 로고
    • A Neural network approach to real-time rainfall estimation for Africa using satellite data
    • Grimes, D. I. F., Coppola, E., Verdecchia, M. & Visconti, G. 2003 A neural network approach to real-time rainfall estimation for Africa using satellite data. J. Hydrometeorol. 4, 1119-1133.
    • (2003) J. Hydrometeorol , vol.4 , pp. 1119-1133
    • Grimes, D.I.F.1    Coppola, E.2    Verdecchia, M.3    Visconti, G.4
  • 20
    • 0029762513 scopus 로고    scopus 로고
    • Global identification of snow cover using SSM/I measurements
    • Grody, N. & Basist, A. 1996 Global identification of snow cover using SSM/I measurements. IEEE Trans. Geosci. Remote Sens. 34, 237-249.
    • (1996) IEEE Trans. Geosci. Remote Sens. , vol.34 , pp. 237-249
    • Grody, N.1    Basist, A.2
  • 21
    • 0037608721 scopus 로고    scopus 로고
    • Mapping the spatial distribution and time evolution of snow water equivalent with passive microwave measurements
    • Guo, J., Tsang, L., Josberger, E. G., Wood, A. W., Hwang, J. -N. & Lettenmaier, D. P. 2003 Mapping the spatial distribution and time evolution of snow water equivalent with passive microwave measurements. IEEE Trans. Geosci. Remote Sens. 41, 612-621.
    • (2003) IEEE Trans. Geosci. Remote Sens. , vol.41 , pp. 612-621
    • Guo, J.1    Tsang, L.2    Josberger, E.G.3    Wood, A.W.4    Hwang, J.-N.5    Lettenmaier, D.P.6
  • 22
    • 45249128046 scopus 로고
    • Microwave radiometry of snow
    • Hallikainen, M. T. 1989 Microwave radiometry of snow. Adv. Space Res. 9, 267-275.
    • (1989) Adv. Space Res. , vol.9 , pp. 267-275
    • Hallikainen, M.T.1
  • 23
    • 0023515080 scopus 로고
    • Counter-propagation networks
    • Hecht-Nielsen, R. 1987 Counter-propagation networks. Appl. Opt. 26, 4979-4984.
    • (1987) Appl. Opt. , vol.26 , pp. 4979-4984
    • Hecht-Nielsen, R.1
  • 24
    • 13244261088 scopus 로고    scopus 로고
    • Precipitation estimation from remotely sensed imagery using an artificial neural network cloud classification system
    • Hong, Y., Hsu, K. -L., Sorooshian, S. & Gao, X. 2004 Precipitation estimation from remotely sensed imagery using an artificial neural network cloud classification system. J. Appl. Meteorol. 43, 1834-1852.
    • (2004) J. Appl. Meteorol. , vol.43 , pp. 1834-1852
    • Hong, Y.1    Hsu, K.-L.2    Sorooshian, S.3    Gao, X.4
  • 25
    • 20044389714 scopus 로고    scopus 로고
    • Improved representation of diurnal variability of rainfall retrieved from the Tropical Rainfall Measurement Mission Microwave Imager adjusted Precipitation Estimation from Remotely Sensed Information Using Artificial Neural Networks (PERSIANN) system
    • DOI 10.1029/2004JD005301, D06102
    • Hong, Y., Hsu, K.-L., Sorooshian, S. & Gao, X. 2005 Improved representation of diurnal variability of rainfall retrieved from the Tropical Rainfall Measurement Mission Microwave Imager adjusted precipitation estimation from remotely sensed information using artificial neural networks (PERSIANN) system. J. Geophys. Res. 110, D06102 (doi:10.1029/2004JD005301). (Pubitemid 40771607)
    • (2005) Journal of Geophysical Research D: Atmospheres , vol.110 , Issue.6 , pp. 1-13
    • Hong, Y.1    Hsu, K.-L.2    Sorooshian, S.3    Gao, X.4
  • 26
    • 33846390557 scopus 로고    scopus 로고
    • Improving flood forecasting in international river basins
    • (see also 54)
    • Hossain, F. & Katiyar, N. 2006 Improving flood forecasting in international river basins. EOS Trans. Am. Geophys. Union 87, 49 (see also 54).
    • (2006) EOS Trans. Am. Geophys. Union , vol.87 , pp. 49
    • Hossain, F.1    Katiyar, N.2
  • 27
    • 0031399333 scopus 로고    scopus 로고
    • Precipitation estimation from remotely sensed informationusing artificial neural networks
    • Hsu, K. -L., Gao, X., Sorooshian, S. & Gupta, H. V. 1997 Precipitation estimation from remotely sensed informationusing artificial neural networks. J. Appl. Meteorol. 36, 1176-1190.
    • (1997) J. Appl. Meteorol. , vol.36 , pp. 1176-1190
    • Hsu, K.-L.1    Gao, X.2    Sorooshian, S.3    Gupta, H.V.4
  • 28
    • 0037381085 scopus 로고    scopus 로고
    • Some neural network applications in environmental sciences. Part I: Forward and inverse problems in geophysical remote measurements
    • Krasnopolsky, V. M. & Schiller, H. 2003 Some neural network applications in environmental sciences. Part I: forward and inverse problems in geophysical remote measurements. Neural Netw. 16, 321-334.
    • (2003) Neural Netw. , vol.16 , pp. 321-334
    • Krasnopolsky, V.M.1    Schiller, H.2
  • 29
    • 0035509011 scopus 로고    scopus 로고
    • An adaptive neural network scheme for radar rainfall estimation from WSR-88D observations
    • DOI 10.1175/1520-0450(2001)040<2038:AANNSF>2.0.CO;2
    • Liu, H., Chandrasekar, V. & Xu, G. 2001 An adaptive neural network scheme for radar rainfall estimation from WSR-88D observations. J. Appl. Meteorol. 40, 2038-2050. (Pubitemid 33127833)
    • (2001) Journal of Applied Meteorology , vol.40 , Issue.11 , pp. 2038-2050
    • Liu, H.1    Chandrasekar, V.2    Xu, G.3
  • 30
    • 33645973206 scopus 로고    scopus 로고
    • Applications of neural network methods to the processing of earth observation satellite data
    • Loyola, R. D. G. 2006 Applications of neural network methods to the processing of earth observation satellite data. Neural Netw. 19, 168-177.
    • (2006) Neural Netw. , vol.19 , pp. 168-177
    • Loyola, R.D.G.1
  • 31
    • 33750609870 scopus 로고    scopus 로고
    • Investigating the impact of remotely sensed precipitation and hydrologic model uncertainties on the ensemble streamflow forecasting
    • Moradkhani, H., Hsu, K., Hong, Y. & Sorooshian, S. 2006 Investigating the impact of remotely sensed precipitation and hydrologic model uncertainties on the ensemble streamflow forecasting. Geophys. Res. Lett. 33, L12 401.
    • (2006) Geophys. Res. Lett. , vol.33 , Issue.L1 , pp. 2401
    • Moradkhani, H.1    Hsu, K.2    Hong, Y.3    Sorooshian, S.4
  • 32
    • 0035481897 scopus 로고    scopus 로고
    • 2001A recurrent neural network classifier for improved retrievals of areal extent of snow cover
    • Simpson, J. J. & Mclntire, T. J. 2001A recurrent neural network classifier for improved retrievals of areal extent of snow cover. IEEE Trans. Geosci. Remote Sens. 39, 2135-2147.
    • IEEE Trans. Geosci. Remote Sens. , vol.39 , pp. 2135-2147
    • Simpson, J.J.1    Mclntire, T.J.2
  • 33
    • 0034333269 scopus 로고    scopus 로고
    • Retrieval of snow water equivalent using passive microwave brightness temperature data
    • Singh, P. R. & Gan, T. Y. 2000 Retrieval of snow water equivalent using passive microwave brightness temperature data. Remote Sens. Environ. 74, 275-286.
    • (2000) Remote Sens. Environ. , vol.74 , pp. 275-286
    • Singh, P.R.1    Gan, T.Y.2
  • 34
    • 0034270797 scopus 로고    scopus 로고
    • Precipitation observations near 54 and 183 GHz using the NOAA-15 satellite
    • Staelin, D. H. & Chen, F. W. 2000 Precipitation observations near 54 and 183 GHz using the NOAA-15 satellite. IEEE Trans. Geosci. Remote Sens. 38, 2322-2332.
    • (2000) IEEE Trans. Geosci. Remote Sens. , vol.38 , pp. 2322-2332
    • Staelin, D.H.1    Chen, F.W.2
  • 35
    • 0032084125 scopus 로고    scopus 로고
    • Estimation of snow water equivalent using passive microwave radiation data
    • Tait, A. B. 1998 Estimation of snow water equivalent using passive microwave radiation data. Remote Sens. Environ. 64, 286-291.
    • (1998) Remote Sens. Environ. , vol.64 , pp. 286-291
    • Tait, A.B.1
  • 36
    • 2342583344 scopus 로고    scopus 로고
    • A Neural networks-based fusion technique to estimate half-hourly rainfall estimates at 0.1° resolution from satellite passive microwave and infrared data
    • Tapiador, F. J., Kidd, C, Levizzani, V. & Marzano, F. S. 2004 A neural networks-based fusion technique to estimate half-hourly rainfall estimates at 0.1° resolution from satellite passive microwave and infrared data. J. Appl. Meteorol. 43, 576-594.
    • (2004) J. Appl. Meteorol. , vol.43 , pp. 576-594
    • Tapiador, F.J.1    Kidd, C.2    Levizzani, V.3    Marzano, F.S.4
  • 38
    • 1242299604 scopus 로고    scopus 로고
    • Artificial neural network-based techniques for the retrieval of SWE and snow depth from SSM/I data
    • Tedesco, M., Pulliainen, J., Takala, M., Hallikainen, M. & Pampaloni, P. 2004 Artificial neural network-based techniques for the retrieval of SWE and snow depth from SSM/I data. Remote Sens. Environ. 90, 76-85.
    • (2004) Remote Sens. Environ. , vol.90 , pp. 76-85
    • Tedesco, M.1    Pulliainen, J.2    Takala, M.3    Hallikainen, M.4    Pampaloni, P.5
  • 39
    • 0036713592 scopus 로고    scopus 로고
    • Data mining techniques for improved WSR-88D rainfall estimation
    • Trafalis, T. B., Richman, M. B., White, A. & Santosa, B. 2002 Data mining techniques for improved WSR-88D rainfall estimation. Comput. Ind. Eng. 43, 775-786.
    • (2002) Comput. Ind. Eng. , vol.43 , pp. 775-786
    • Trafalis, T.B.1    Richman, M.B.2    White, A.3    Santosa, B.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.