메뉴 건너뛰기




Volumn 41, Issue 9, 2008, Pages 2789-2799

A unified framework for semi-supervised dimensionality reduction

Author keywords

Dimensionality reduction; Discriminant analysis; Manifold analysis; Semi supervised learning

Indexed keywords

ALGORITHMS; COMPUTATIONAL EFFICIENCY; DISCRIMINANT ANALYSIS; PRINCIPAL COMPONENT ANALYSIS; PROBLEM SOLVING;

EID: 44649132677     PISSN: 00313203     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.patcog.2008.01.001     Document Type: Article
Times cited : (183)

References (27)
  • 3
    • 33144458972 scopus 로고    scopus 로고
    • Efficient and robust feature extraction by maximum margin criterion
    • Li H., Jiang T., and Zhang K. Efficient and robust feature extraction by maximum margin criterion. IEEE Trans. Neural Networks 17 1 (2006) 157-165
    • (2006) IEEE Trans. Neural Networks , vol.17 , Issue.1 , pp. 157-165
    • Li, H.1    Jiang, T.2    Zhang, K.3
  • 4
    • 0026384289 scopus 로고    scopus 로고
    • M. Turk, A. Pentland, Face recognition using eigenfaces, in: Proceedings of the Computer Vision and Pattern Recognition, 1991.
    • M. Turk, A. Pentland, Face recognition using eigenfaces, in: Proceedings of the Computer Vision and Pattern Recognition, 1991.
  • 5
    • 14544297033 scopus 로고    scopus 로고
    • KPCA plus LDA: A complete kernel fisher discriminant framework for feature extraction and recognition
    • Yang J., Frangi A.F., Yang J.Y., Zhang D., and Jin Z. KPCA plus LDA: A complete kernel fisher discriminant framework for feature extraction and recognition. IEEE Trans. Pattern Anal. Mach. Intell. 27 2 (2005) 230-244
    • (2005) IEEE Trans. Pattern Anal. Mach. Intell. , vol.27 , Issue.2 , pp. 230-244
    • Yang, J.1    Frangi, A.F.2    Yang, J.Y.3    Zhang, D.4    Jin, Z.5
  • 6
    • 44649153837 scopus 로고    scopus 로고
    • F. Chung, Spectral graph theory, in: CBMS Regional Conference Series in Mathematics, vol. 92, American Mathematical Society, 1997.
    • F. Chung, Spectral graph theory, in: CBMS Regional Conference Series in Mathematics, vol. 92, American Mathematical Society, 1997.
  • 7
    • 84865131152 scopus 로고    scopus 로고
    • B. Schölkopf, R. Herbrich, A.J. Smola, A generalized representer theorem, in: Proceedings of Computational Learning Theory, 2001, pp. 416-426.
    • B. Schölkopf, R. Herbrich, A.J. Smola, A generalized representer theorem, in: Proceedings of Computational Learning Theory, 2001, pp. 416-426.
  • 9
    • 34547964600 scopus 로고    scopus 로고
    • J. Ye, Least squares linear discriminant analysis, in: International Conference on Machine Learning, 2007, pp. 1087-1093.
    • J. Ye, Least squares linear discriminant analysis, in: International Conference on Machine Learning, 2007, pp. 1087-1093.
  • 10
    • 44649191798 scopus 로고    scopus 로고
    • P. Zhang, J. Peng, N. Riedel, Discriminant analysis: a least squares approximation view, in: Proceedings of the Computer Vision and Pattern Recognition Workshop on Learning, 2005, p. 46.
    • P. Zhang, J. Peng, N. Riedel, Discriminant analysis: a least squares approximation view, in: Proceedings of the Computer Vision and Pattern Recognition Workshop on Learning, 2005, p. 46.
  • 12
    • 0036195207 scopus 로고    scopus 로고
    • Nonlinear fisher discriminant analysis using a minimum squared error cost function and the orthogonal least squares algorithm
    • Billings S.A., and Lee K.L. Nonlinear fisher discriminant analysis using a minimum squared error cost function and the orthogonal least squares algorithm. Neural Networks 15 2 (2002) 263-270
    • (2002) Neural Networks , vol.15 , Issue.2 , pp. 263-270
    • Billings, S.A.1    Lee, K.L.2
  • 13
  • 14
    • 36448962045 scopus 로고    scopus 로고
    • Manifold regularization: a geometric framework for learning from labeled and unlabeled examples
    • Belkin M., Niyogi P., and Sindhwani V. Manifold regularization: a geometric framework for learning from labeled and unlabeled examples. J. Mach. Learning Res. 1 1 (2006) 1-48
    • (2006) J. Mach. Learning Res. , vol.1 , Issue.1 , pp. 1-48
    • Belkin, M.1    Niyogi, P.2    Sindhwani, V.3
  • 15
    • 0034296402 scopus 로고    scopus 로고
    • Generalized discriminant analysis using a kernel approach
    • Baudat G., and Anouar F. Generalized discriminant analysis using a kernel approach. Neural Comput. 12 10 (2000) 2385-2404
    • (2000) Neural Comput. , vol.12 , Issue.10 , pp. 2385-2404
    • Baudat, G.1    Anouar, F.2
  • 16
    • 84899018574 scopus 로고    scopus 로고
    • S. Mika, G. Rätsch, B. Schölkopf, A. Smola, J. Weston, K.-R. Müller, Invariant feature extraction and classification in kernel spaces, Proceedings of the Neural Information Processing Systems (1999) 526-532.
    • S. Mika, G. Rätsch, B. Schölkopf, A. Smola, J. Weston, K.-R. Müller, Invariant feature extraction and classification in kernel spaces, Proceedings of the Neural Information Processing Systems (1999) 526-532.
  • 17
    • 26944466388 scopus 로고    scopus 로고
    • W. Du, K. Inoue, K. Urahama, Dimensionality reduction for semi-supervised face recognition, in: Proceedings of the Fuzzy Systems and Knowledge Discovery, 2005, pp. 1-10.
    • W. Du, K. Inoue, K. Urahama, Dimensionality reduction for semi-supervised face recognition, in: Proceedings of the Fuzzy Systems and Knowledge Discovery, 2005, pp. 1-10.
  • 18
    • 22944435531 scopus 로고    scopus 로고
    • H. Liu, X. Yuan, Q. Tang, R. Kustra, An efficient method to estimate labelled sample size for transductive LDA(QDA/MDA) based on bayes risk, in: Proceedings of the European Conference on Machine Learning, 2004, pp. 274-285.
    • H. Liu, X. Yuan, Q. Tang, R. Kustra, An efficient method to estimate labelled sample size for transductive LDA(QDA/MDA) based on bayes risk, in: Proceedings of the European Conference on Machine Learning, 2004, pp. 274-285.
  • 19
    • 84898984897 scopus 로고    scopus 로고
    • V. Roth, V. Steinhage, Nonlinear discriminant analysis using kernel functions, in: Neural Information Processing Systems, 1999, pp. 568-574.
    • V. Roth, V. Steinhage, Nonlinear discriminant analysis using kernel functions, in: Neural Information Processing Systems, 1999, pp. 568-574.
  • 20
    • 57749197763 scopus 로고    scopus 로고
    • D. Zhang, Z.-H. Zhou, S. Chen, Semi-supervised dimensionality reduction, in: SIAM Conference on Data Mining (SDM), 2007.
    • D. Zhang, Z.-H. Zhou, S. Chen, Semi-supervised dimensionality reduction, in: SIAM Conference on Data Mining (SDM), 2007.
  • 21
    • 34250705299 scopus 로고    scopus 로고
    • X. Yang, H. Fu, H. Zha, J. Barlow, Semi-supervised nonlinear dimensionality reduction, in: Proceedings of the International Conference on Machine Learning, 2006, pp. 1065-1072.
    • X. Yang, H. Fu, H. Zha, J. Barlow, Semi-supervised nonlinear dimensionality reduction, in: Proceedings of the International Conference on Machine Learning, 2006, pp. 1065-1072.
  • 22
    • 49049111209 scopus 로고    scopus 로고
    • D. Cai, X. He, J. Han, Semi-supervised discriminant analysis, in: Proceedings of the International Conference on Computer Vision, 2007.
    • D. Cai, X. He, J. Han, Semi-supervised discriminant analysis, in: Proceedings of the International Conference on Computer Vision, 2007.
  • 23
    • 44649150272 scopus 로고    scopus 로고
    • M. Belkin, P. Niyogi, Laplacian eigenmaps and spectral techniques for embedding and clustering, in: Neural Information Processing Systems 2001, pp. 585-591.
    • M. Belkin, P. Niyogi, Laplacian eigenmaps and spectral techniques for embedding and clustering, in: Neural Information Processing Systems 2001, pp. 585-591.
  • 24
    • 0028734063 scopus 로고    scopus 로고
    • F.S. Samaria, A.C. Harter, Parameterisation of a stochastic model for human face identification, in: IEEE Workshop on Applications of Computer Vision, 1994, pp. 138-142.
    • F.S. Samaria, A.C. Harter, Parameterisation of a stochastic model for human face identification, in: IEEE Workshop on Applications of Computer Vision, 1994, pp. 138-142.
  • 25
    • 0035363672 scopus 로고    scopus 로고
    • From few to many: Illumination cone models for face recognition under variable lighting and pose
    • Georghiades A., Belhumeur P., and Kriegman D. From few to many: Illumination cone models for face recognition under variable lighting and pose. IEEE Trans. Pattern Anal. Mach. Intell. 23 6 (2001) 643-660
    • (2001) IEEE Trans. Pattern Anal. Mach. Intell. , vol.23 , Issue.6 , pp. 643-660
    • Georghiades, A.1    Belhumeur, P.2    Kriegman, D.3
  • 26
    • 0001576029 scopus 로고    scopus 로고
    • Characterizing virtual eigensignatures for general purpose face recognition
    • Graham D., and Allinson N. Characterizing virtual eigensignatures for general purpose face recognition. Face Recognition: From Theory to Appl. 163 (1998) 446-456
    • (1998) Face Recognition: From Theory to Appl. , vol.163 , pp. 446-456
    • Graham, D.1    Allinson, N.2
  • 27
    • 44649177034 scopus 로고    scopus 로고
    • ∼mlearn/MLRepository.html/〉.
    • ∼mlearn/MLRepository.html/〉.


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.