-
1
-
-
0003720816
-
-
Adacemic Press, Inc., New York
-
Bernstein C., Bernstein H. Aging, Sex and DNA Repair 1991, Adacemic Press, Inc., New York.
-
(1991)
Aging, Sex and DNA Repair
-
-
Bernstein, C.1
Bernstein, H.2
-
2
-
-
66349132334
-
Proofreading exonuclease activity of human DNA polymerase delta and its effects on lesion-bypass DNA synthesis
-
Fazlieva R., Spittle C.S., Morrissey D., Hayashi H., Yan H., Matsumoto Y. Proofreading exonuclease activity of human DNA polymerase delta and its effects on lesion-bypass DNA synthesis. Nucleic Acids Res. 2009, 37:2854-2866.
-
(2009)
Nucleic Acids Res.
, vol.37
, pp. 2854-2866
-
-
Fazlieva, R.1
Spittle, C.S.2
Morrissey, D.3
Hayashi, H.4
Yan, H.5
Matsumoto, Y.6
-
3
-
-
0037196073
-
The proofreading 3'->5' exonuclease activity of DNA polymerases: a kinetic barrier to translesion DNA synthesis
-
Khare V., Eckert K.A. The proofreading 3'->5' exonuclease activity of DNA polymerases: a kinetic barrier to translesion DNA synthesis. Mutat. Res. 2002, 510:45-54.
-
(2002)
Mutat. Res.
, vol.510
, pp. 45-54
-
-
Khare, V.1
Eckert, K.A.2
-
4
-
-
24044500612
-
Pol III proofreading activity prevents lesion bypass as evidenced by its molecular signature within E. coli cells
-
Pages V., Janel-Bintz R., Fuchs R.P. Pol III proofreading activity prevents lesion bypass as evidenced by its molecular signature within E. coli cells. J. Mol. Biol. 2005, 352:501-509.
-
(2005)
J. Mol. Biol.
, vol.352
, pp. 501-509
-
-
Pages, V.1
Janel-Bintz, R.2
Fuchs, R.P.3
-
5
-
-
55249101776
-
Evidence for lesion bypass by yeast replicative DNA polymerases during DNA damage
-
Sabouri N., Viberg J., Goyal D.K., Johansson E., Chabes A. Evidence for lesion bypass by yeast replicative DNA polymerases during DNA damage. Nucleic Acids Res. 2008, 36:5660-5667.
-
(2008)
Nucleic Acids Res.
, vol.36
, pp. 5660-5667
-
-
Sabouri, N.1
Viberg, J.2
Goyal, D.K.3
Johansson, E.4
Chabes, A.5
-
6
-
-
63849131910
-
Eukaryotic translesion polymerases and their roles and regulation in DNA damage tolerance
-
Waters L.S., Minesinger B.K., Wiltrout M.E., D'Souza S., Woodruff R.V., Walker G.C. Eukaryotic translesion polymerases and their roles and regulation in DNA damage tolerance. Microbiol. Mol. Biol. Rev. 2009, 73:134-154.
-
(2009)
Microbiol. Mol. Biol. Rev.
, vol.73
, pp. 134-154
-
-
Waters, L.S.1
Minesinger, B.K.2
Wiltrout, M.E.3
D'Souza, S.4
Woodruff, R.V.5
Walker, G.C.6
-
7
-
-
38049125552
-
The fidelity of DNA synthesis by eukaryotic replicative and translesion synthesis polymerases
-
McCulloch S.D., Kunkel T.A. The fidelity of DNA synthesis by eukaryotic replicative and translesion synthesis polymerases. Cell Res. 2008, 18:148-161.
-
(2008)
Cell Res.
, vol.18
, pp. 148-161
-
-
McCulloch, S.D.1
Kunkel, T.A.2
-
8
-
-
77049127484
-
Role of yeast Rad5 and its human orthologs, HLTF and SHPRH in DNA damage tolerance
-
Unk I., Hajdu I., Blastyak A., Haracska L. Role of yeast Rad5 and its human orthologs, HLTF and SHPRH in DNA damage tolerance. DNA Repair (Amst.) 2010, 9:257-267.
-
(2010)
DNA Repair (Amst.)
, vol.9
, pp. 257-267
-
-
Unk, I.1
Hajdu, I.2
Blastyak, A.3
Haracska, L.4
-
9
-
-
38049123477
-
Eukaryotic DNA damage tolerance and translesion synthesis through covalent modifications of PCNA
-
Andersen P.L., Xu F., Xiao W. Eukaryotic DNA damage tolerance and translesion synthesis through covalent modifications of PCNA. Cell Res. 2008, 18:162-173.
-
(2008)
Cell Res.
, vol.18
, pp. 162-173
-
-
Andersen, P.L.1
Xu, F.2
Xiao, W.3
-
10
-
-
0025232659
-
The SRS2 suppressor of rad6 mutations of Saccharomyces cerevisiae acts by channeling DNA lesions into the RAD52 DNA repair pathway
-
Schiestl R.H., Prakash S., Prakash L. The SRS2 suppressor of rad6 mutations of Saccharomyces cerevisiae acts by channeling DNA lesions into the RAD52 DNA repair pathway. Genetics 1990, 124:817-831.
-
(1990)
Genetics
, vol.124
, pp. 817-831
-
-
Schiestl, R.H.1
Prakash, S.2
Prakash, L.3
-
11
-
-
0035445946
-
The srs2 suppressor of UV sensitivity acts specifically on the RAD5- and MMS2-dependent branch of the RAD6 pathway
-
Ulrich H.D. The srs2 suppressor of UV sensitivity acts specifically on the RAD5- and MMS2-dependent branch of the RAD6 pathway. Nucleic Acids Res. 2001, 29:3487-3494.
-
(2001)
Nucleic Acids Res.
, vol.29
, pp. 3487-3494
-
-
Ulrich, H.D.1
-
12
-
-
67649447015
-
The yeast Shu complex couples error-free post-replication repair to homologous recombination
-
Ball L.G., Zhang K., Cobb J.A., Boone C., Xiao W. The yeast Shu complex couples error-free post-replication repair to homologous recombination. Mol. Microbiol. 2009, 73:89-102.
-
(2009)
Mol. Microbiol.
, vol.73
, pp. 89-102
-
-
Ball, L.G.1
Zhang, K.2
Cobb, J.A.3
Boone, C.4
Xiao, W.5
-
14
-
-
50649100744
-
Mechanism of eukaryotic homologous recombination
-
San Filippo J., Sung P., Klein H. Mechanism of eukaryotic homologous recombination. Annu. Rev. Biochem. 2008, 77:229-257.
-
(2008)
Annu. Rev. Biochem.
, vol.77
, pp. 229-257
-
-
San Filippo, J.1
Sung, P.2
Klein, H.3
-
15
-
-
38049173021
-
Homologous recombination in DNA repair and DNA damage tolerance
-
Li X., Heyer W.D. Homologous recombination in DNA repair and DNA damage tolerance. Cell Res. 2008, 18:99-113.
-
(2008)
Cell Res.
, vol.18
, pp. 99-113
-
-
Li, X.1
Heyer, W.D.2
-
16
-
-
76749123854
-
The FANCM family of DNA helicases/translocases
-
Whitby M.C. The FANCM family of DNA helicases/translocases. DNA Repair (Amst.) 2010, 9:224-236.
-
(2010)
DNA Repair (Amst.)
, vol.9
, pp. 224-236
-
-
Whitby, M.C.1
-
17
-
-
18544407319
-
Functional analysis of 150 deletion mutants in Saccharomyces cerevisiae by a systematic approach
-
Entian K.D., Schuster T., Hegemann J.H., Becher D., Feldmann H., Güldener U., Götz R., Hansen M., Hollenberg C.P., Jansen G., Kramer W., Klein S., Kötter P., Kricke J., Launhardt H., Mannhaupt G., Maierl A., Meyer P., Mewes W., Munder T., Niedenthal R.K., Ramezani Rad M., Röhmer A., Römer A., Hinnen A., et al. Functional analysis of 150 deletion mutants in Saccharomyces cerevisiae by a systematic approach. Mol. Gen. Genet. 1999, 262:683-702.
-
(1999)
Mol. Gen. Genet.
, vol.262
, pp. 683-702
-
-
Entian, K.D.1
Schuster, T.2
Hegemann, J.H.3
Becher, D.4
Feldmann, H.5
Güldener, U.6
Götz, R.7
Hansen, M.8
Hollenberg, C.P.9
Jansen, G.10
Kramer, W.11
Klein, S.12
Kötter, P.13
Kricke, J.14
Launhardt, H.15
Mannhaupt, G.16
Maierl, A.17
Meyer, P.18
Mewes, W.19
Munder, T.20
Niedenthal, R.K.21
Ramezani Rad, M.22
Röhmer, A.23
Römer, A.24
Hinnen, A.25
more..
-
18
-
-
17344391705
-
MPH1, a yeast gene encoding a DEAH protein, plays a role in protection of the genome from spontaneous and chemically induced damage
-
Scheller J., Schürer A., Rudolph C., Hettwer S., Kramer W. MPH1, a yeast gene encoding a DEAH protein, plays a role in protection of the genome from spontaneous and chemically induced damage. Genetics 2000, 155:1069-1081.
-
(2000)
Genetics
, vol.155
, pp. 1069-1081
-
-
Scheller, J.1
Schürer, A.2
Rudolph, C.3
Hettwer, S.4
Kramer, W.5
-
19
-
-
0019291994
-
The origin of spontaneous mutation in Saccharomyces cerevisiae
-
Quah S.K., von Borstel R.C., Hastings P.J. The origin of spontaneous mutation in Saccharomyces cerevisiae. Genetics 1980, 96:819-839.
-
(1980)
Genetics
, vol.96
, pp. 819-839
-
-
Quah, S.K.1
von Borstel, R.C.2
Hastings, P.J.3
-
20
-
-
2442572065
-
Yeast MPH1 gene functions in an error-free DNA damage bypass pathway that requires genes from homologous recombination, but not from postreplicative repair
-
Schürer K.A., Rudolph C., Ulrich H.D., Kramer W. Yeast MPH1 gene functions in an error-free DNA damage bypass pathway that requires genes from homologous recombination, but not from postreplicative repair. Genetics 2004, 166:1673-1686.
-
(2004)
Genetics
, vol.166
, pp. 1673-1686
-
-
Schürer, K.A.1
Rudolph, C.2
Ulrich, H.D.3
Kramer, W.4
-
21
-
-
14844296413
-
Saccharomyces cerevisiae MPH1 gene, required for homologous recombination-mediated mutation avoidance, encodes a 3' to 5' DNA helicase
-
Prakash R., Krejci L., Van Komen S., Schürer K.A., Kramer W., Sung P. Saccharomyces cerevisiae MPH1 gene, required for homologous recombination-mediated mutation avoidance, encodes a 3' to 5' DNA helicase. J. Biol. Chem. 2005, 280:7854-7860.
-
(2005)
J. Biol. Chem.
, vol.280
, pp. 7854-7860
-
-
Prakash, R.1
Krejci, L.2
Van Komen, S.3
Schürer, K.A.4
Kramer, W.5
Sung, P.6
-
22
-
-
75849122515
-
Defects in DNA lesion bypass lead to spontaneous chromosomal rearrangements and increased cell death
-
Schmidt K.H., Viebranz E.B., Harris L.B., Mirzaei-Souderjani H., Syed S., Medicus R. Defects in DNA lesion bypass lead to spontaneous chromosomal rearrangements and increased cell death. Eukaryot. Cell 2010, 9:315-324.
-
(2010)
Eukaryot. Cell
, vol.9
, pp. 315-324
-
-
Schmidt, K.H.1
Viebranz, E.B.2
Harris, L.B.3
Mirzaei-Souderjani, H.4
Syed, S.5
Medicus, R.6
-
23
-
-
73449132571
-
Genetic evidence for a role of Saccharomyces cerevisiae Mph1 in recombinational DNA repair under replicative stress
-
Panico E.R., Ede C., Schildmann M., Schürer K.A., Kramer W. Genetic evidence for a role of Saccharomyces cerevisiae Mph1 in recombinational DNA repair under replicative stress. Yeast 2010, 27:11-27.
-
(2010)
Yeast
, vol.27
, pp. 11-27
-
-
Panico, E.R.1
Ede, C.2
Schildmann, M.3
Schürer, K.A.4
Kramer, W.5
-
24
-
-
58149494717
-
Yeast Mph1 helicase dissociates Rad51-made D-loops: implications for crossover control in mitotic recombination
-
Prakash R., Satory D., Dray E., Papusha A., Scheller J., Kramer W., Krejci L., Klein H., Haber J.E., Sung P., Ira G. Yeast Mph1 helicase dissociates Rad51-made D-loops: implications for crossover control in mitotic recombination. Genes Dev. 2009, 23:67-79.
-
(2009)
Genes Dev.
, vol.23
, pp. 67-79
-
-
Prakash, R.1
Satory, D.2
Dray, E.3
Papusha, A.4
Scheller, J.5
Kramer, W.6
Krejci, L.7
Klein, H.8
Haber, J.E.9
Sung, P.10
Ira, G.11
-
25
-
-
46249091062
-
Mph1p promotes gross chromosomal rearrangement through partial inhibition of homologous recombination
-
Banerjee S., Smith S., Oum J.H., Liaw H.J., Hwang J.Y., Sikdar N., Motegi A., Lee S.E., Myung K. Mph1p promotes gross chromosomal rearrangement through partial inhibition of homologous recombination. J. Cell Biol. 2008, 181:1083-1093.
-
(2008)
J. Cell Biol.
, vol.181
, pp. 1083-1093
-
-
Banerjee, S.1
Smith, S.2
Oum, J.H.3
Liaw, H.J.4
Hwang, J.Y.5
Sikdar, N.6
Motegi, A.7
Lee, S.E.8
Myung, K.9
-
26
-
-
67449091971
-
The MPH1 gene of Saccharomyces cerevisiae functions in Okazaki fragment processing
-
Kang Y.H., Kang M.J., Kim J.H., Lee C.H., Cho I.T., Hurwitz J., Seo Y.S. The MPH1 gene of Saccharomyces cerevisiae functions in Okazaki fragment processing. J. Biol. Chem. 2009, 284:10376-10386.
-
(2009)
J. Biol. Chem.
, vol.284
, pp. 10376-10386
-
-
Kang, Y.H.1
Kang, M.J.2
Kim, J.H.3
Lee, C.H.4
Cho, I.T.5
Hurwitz, J.6
Seo, Y.S.7
-
27
-
-
0036698611
-
Novel endonuclease in Archaea cleaving DNA with various branched structure
-
Komori K., Fujikane R., Shinagawa H., Ishino Y. Novel endonuclease in Archaea cleaving DNA with various branched structure. Genes Genet. Syst. 2002, 77:227-241.
-
(2002)
Genes Genet. Syst.
, vol.77
, pp. 227-241
-
-
Komori, K.1
Fujikane, R.2
Shinagawa, H.3
Ishino, Y.4
-
28
-
-
53149087431
-
The FANCM ortholog Fml1 promotes recombination at stalled replication forks and limits crossing over during DNA double-strand break repair
-
Sun W., Nandi S., Osman F., Ahn J.S., Jakovleska J., Lorenz A., Whitby M.C. The FANCM ortholog Fml1 promotes recombination at stalled replication forks and limits crossing over during DNA double-strand break repair. Mol. Cell 2008, 32:118-128.
-
(2008)
Mol. Cell
, vol.32
, pp. 118-128
-
-
Sun, W.1
Nandi, S.2
Osman, F.3
Ahn, J.S.4
Jakovleska, J.5
Lorenz, A.6
Whitby, M.C.7
-
29
-
-
75849132866
-
Interplay between the Smc5/6 complex and the Mph1 helicase in recombinational repair
-
Chen Y.H., Choi K., Szakal B., Arenz J., Duan X., Ye H., Branzei D., Zhao X. Interplay between the Smc5/6 complex and the Mph1 helicase in recombinational repair. Proc. Natl. Acad. Sci. U.S.A. 2009, 106:21252-21257.
-
(2009)
Proc. Natl. Acad. Sci. U.S.A.
, vol.106
, pp. 21252-21257
-
-
Chen, Y.H.1
Choi, K.2
Szakal, B.3
Arenz, J.4
Duan, X.5
Ye, H.6
Branzei, D.7
Zhao, X.8
-
30
-
-
12444336898
-
X-ray and biochemical anatomy of an archaeal XPF/Rad1/Mus81 family nuclease: similarity between its endonuclease domain and restriction enzymes
-
Nishino T., Komori K., Ishino Y., Morikawa K. X-ray and biochemical anatomy of an archaeal XPF/Rad1/Mus81 family nuclease: similarity between its endonuclease domain and restriction enzymes. Structure (Camb.) 2003, 11:445-457.
-
(2003)
Structure (Camb.)
, vol.11
, pp. 445-457
-
-
Nishino, T.1
Komori, K.2
Ishino, Y.3
Morikawa, K.4
-
31
-
-
11844252069
-
Crystal structure and functional implications of Pyrococcus furiosus hef helicase domain involved in branched DNA processing
-
Nishino T., Komori K., Tsuchiya D., Ishino Y., Morikawa K. Crystal structure and functional implications of Pyrococcus furiosus hef helicase domain involved in branched DNA processing. Structure (Camb.) 2005, 13:143-153.
-
(2005)
Structure (Camb.)
, vol.13
, pp. 143-153
-
-
Nishino, T.1
Komori, K.2
Tsuchiya, D.3
Ishino, Y.4
Morikawa, K.5
-
32
-
-
11144225798
-
Cooperation of the N-terminal helicase and C-terminal endonuclease activities of archaeal Hef protein in processing stalled replication forks
-
Komori K., Hidaka M., Horiuchi T., Fujikane R., Shinagawa H., Ishino Y. Cooperation of the N-terminal helicase and C-terminal endonuclease activities of archaeal Hef protein in processing stalled replication forks. J. Biol. Chem. 2004, 279:53175-53185.
-
(2004)
J. Biol. Chem.
, vol.279
, pp. 53175-53185
-
-
Komori, K.1
Hidaka, M.2
Horiuchi, T.3
Fujikane, R.4
Shinagawa, H.5
Ishino, Y.6
-
33
-
-
72149119542
-
How the fanconi anemia pathway guards the genome
-
Moldovan G.L., D'Andrea A.D. How the fanconi anemia pathway guards the genome. Annu. Rev. Genet. 2009, 43:223-249.
-
(2009)
Annu. Rev. Genet.
, vol.43
, pp. 223-249
-
-
Moldovan, G.L.1
D'Andrea, A.D.2
-
34
-
-
26944499485
-
The vertebrate Hef ortholog is a component of the Fanconi anemia tumor-suppressor pathway
-
Mosedale G., Niedzwiedz W., Alpi A., Perrina F., Pereira-Leal J.B., Johnson M., Langevin F., Pace P., Patel K.J. The vertebrate Hef ortholog is a component of the Fanconi anemia tumor-suppressor pathway. Nat. Struct. Mol. Biol. 2005, 12:763-771.
-
(2005)
Nat. Struct. Mol. Biol.
, vol.12
, pp. 763-771
-
-
Mosedale, G.1
Niedzwiedz, W.2
Alpi, A.3
Perrina, F.4
Pereira-Leal, J.B.5
Johnson, M.6
Langevin, F.7
Pace, P.8
Patel, K.J.9
-
35
-
-
25144449181
-
A human ortholog of archaeal DNA repair protein Hef is defective in Fanconi anemia complementation group M
-
Meetei A.R., Medhurst A.L., Ling C., Xue Y., Singh T.R., Bier P., Steltenpool J., Stone S., Dokal I., Mathew C.G., Hoatlin M., Joenje H., de Winter J.P., Wang W. A human ortholog of archaeal DNA repair protein Hef is defective in Fanconi anemia complementation group M. Nat. Genet. 2005, 37:958-963.
-
(2005)
Nat. Genet.
, vol.37
, pp. 958-963
-
-
Meetei, A.R.1
Medhurst, A.L.2
Ling, C.3
Xue, Y.4
Singh, T.R.5
Bier, P.6
Steltenpool, J.7
Stone, S.8
Dokal, I.9
Mathew, C.G.10
Hoatlin, M.11
Joenje, H.12
de Winter, J.P.13
Wang, W.14
-
36
-
-
33846799430
-
Identification of FAAP24, a Fanconi anemia core complex protein that interacts with FANCM
-
Ciccia A., Ling C., Coulthard R., Yan Z., Xue Y., Meetei A.R., Laghmani el H., Joenje H., McDonald N., de Winter J.P., Wang W., West S.C. Identification of FAAP24, a Fanconi anemia core complex protein that interacts with FANCM. Mol. Cell 2007, 25:331-343.
-
(2007)
Mol. Cell
, vol.25
, pp. 331-343
-
-
Ciccia, A.1
Ling, C.2
Coulthard, R.3
Yan, Z.4
Xue, Y.5
Meetei, A.R.6
Laghmani el, H.7
Joenje, H.8
McDonald, N.9
de Winter, J.P.10
Wang, W.11
West, S.C.12
-
37
-
-
67650569540
-
Impaired FANCD2 monoubiquitination and hypersensitivity to camptothecin uniquely characterize Fanconi anemia complementation group M
-
Singh T.R., Bakker S.T., Agarwal S., Jansen M., Grassman E., Godthelp B.C., Ali A.M., Du C.H., Rooimans M.A., Fan Q., Wahengbam K., Steltenpool J., Andreassen P.R., Williams D.A., Joenje H., de Winter J.P., Meetei A.R. Impaired FANCD2 monoubiquitination and hypersensitivity to camptothecin uniquely characterize Fanconi anemia complementation group M. Blood 2009, 114:174-180.
-
(2009)
Blood
, vol.114
, pp. 174-180
-
-
Singh, T.R.1
Bakker, S.T.2
Agarwal, S.3
Jansen, M.4
Grassman, E.5
Godthelp, B.C.6
Ali, A.M.7
Du, C.H.8
Rooimans, M.A.9
Fan, Q.10
Wahengbam, K.11
Steltenpool, J.12
Andreassen, P.R.13
Williams, D.A.14
Joenje, H.15
de Winter, J.P.16
Meetei, A.R.17
-
38
-
-
67949085157
-
The Walker B motif in avian FANCM is required to limit sister chromatid exchanges but is dispensable for DNA crosslink repair
-
Rosado I.V., Niedzwiedz W., Alpi A.F., Patel K.J. The Walker B motif in avian FANCM is required to limit sister chromatid exchanges but is dispensable for DNA crosslink repair. Nucleic Acids Res. 2009, 37:4360-4370.
-
(2009)
Nucleic Acids Res.
, vol.37
, pp. 4360-4370
-
-
Rosado, I.V.1
Niedzwiedz, W.2
Alpi, A.F.3
Patel, K.J.4
-
39
-
-
55849133052
-
Remodeling of DNA replication structures by the branch point translocase FANCM
-
Gari K., Decaillet C., Delannoy M., Wu L., Constantinou A. Remodeling of DNA replication structures by the branch point translocase FANCM. Proc. Natl. Acad. Sci. U.S.A. 2008, 105:16107-16112.
-
(2008)
Proc. Natl. Acad. Sci. U.S.A.
, vol.105
, pp. 16107-16112
-
-
Gari, K.1
Decaillet, C.2
Delannoy, M.3
Wu, L.4
Constantinou, A.5
-
40
-
-
38349050087
-
The Fanconi anemia protein FANCM can promote branch migration of Holliday junctions and replication forks
-
Gari K., Decaillet C., Stasiak A.Z., Stasiak A., Constantinou A. The Fanconi anemia protein FANCM can promote branch migration of Holliday junctions and replication forks. Mol. Cell 2008, 29:141-148.
-
(2008)
Mol. Cell
, vol.29
, pp. 141-148
-
-
Gari, K.1
Decaillet, C.2
Stasiak, A.Z.3
Stasiak, A.4
Constantinou, A.5
-
41
-
-
77149123028
-
FANCM regulates DNA chain elongation and is stabilized by S-phase checkpoint signalling
-
Luke-Glaser S., Luke B., Grossi S., Constantinou A. FANCM regulates DNA chain elongation and is stabilized by S-phase checkpoint signalling. EMBO J. 2009, 29:795-805.
-
(2009)
EMBO J.
, vol.29
, pp. 795-805
-
-
Luke-Glaser, S.1
Luke, B.2
Grossi, S.3
Constantinou, A.4
-
42
-
-
77149135723
-
ATR activation and replication fork restart are defective in FANCM-deficient cells
-
Schwab R.A., Blackford A.N., Niedzwiedz W. ATR activation and replication fork restart are defective in FANCM-deficient cells. EMBO J. 2010, 29:806-818.
-
(2010)
EMBO J.
, vol.29
, pp. 806-818
-
-
Schwab, R.A.1
Blackford, A.N.2
Niedzwiedz, W.3
-
43
-
-
77949563363
-
MHF1-MHF2, a histone-fold-containing protein complex, participates in the Fanconi anemia pathway via FANCM
-
Singh T.R., Saro D., Ali A.M., Zheng X.F., Du C.H., Killen M.W., Sachpatzidis A., Wahengbam K., Pierce A.J., Xiong Y., Sung P., Meetei A.R. MHF1-MHF2, a histone-fold-containing protein complex, participates in the Fanconi anemia pathway via FANCM. Mol. Cell 2010, 37:879-886.
-
(2010)
Mol. Cell
, vol.37
, pp. 879-886
-
-
Singh, T.R.1
Saro, D.2
Ali, A.M.3
Zheng, X.F.4
Du, C.H.5
Killen, M.W.6
Sachpatzidis, A.7
Wahengbam, K.8
Pierce, A.J.9
Xiong, Y.10
Sung, P.11
Meetei, A.R.12
-
44
-
-
77949701960
-
A histone-fold complex and FANCM form a conserved DNA-remodeling complex to maintain genome stability
-
Yan Z., Delannoy M., Ling C., Daee D., Osman F., Muniandy P.A., Shen X., Oostra A.B., Du H., Steltenpool J., Lin T., Schuster B., Decaillet C., Stasiak A., Stasiak A.Z., Stone S., Hoatlin M.E., Schindler D., Woodcock C.L., Joenje H., Sen R., de Winter J.P., Li L., Seidman M.M., Whitby M.C., Myung K., Constantinou A., Wang W. A histone-fold complex and FANCM form a conserved DNA-remodeling complex to maintain genome stability. Mol. Cell 2010, 37:865-878.
-
(2010)
Mol. Cell
, vol.37
, pp. 865-878
-
-
Yan, Z.1
Delannoy, M.2
Ling, C.3
Daee, D.4
Osman, F.5
Muniandy, P.A.6
Shen, X.7
Oostra, A.B.8
Du, H.9
Steltenpool, J.10
Lin, T.11
Schuster, B.12
Decaillet, C.13
Stasiak, A.14
Stasiak, A.Z.15
Stone, S.16
Hoatlin, M.E.17
Schindler, D.18
Woodcock, C.L.19
Joenje, H.20
Sen, R.21
de Winter, J.P.22
Li, L.23
Seidman, M.M.24
Whitby, M.C.25
Myung, K.26
Constantinou, A.27
Wang, W.28
more..
-
45
-
-
0028676232
-
New heterologous modules for classical or PCR-based gene disruptions in Saccharomyces cerevisiae
-
Wach A., Brachat A., Pohlmann R., Philippsen P. New heterologous modules for classical or PCR-based gene disruptions in Saccharomyces cerevisiae. Yeast 1994, 10:1793-1808.
-
(1994)
Yeast
, vol.10
, pp. 1793-1808
-
-
Wach, A.1
Brachat, A.2
Pohlmann, R.3
Philippsen, P.4
-
46
-
-
0024266139
-
New yeast-Escherichia coli shuttle vectors constructed with in vitro mutagenized yeast genes lacking six-base pair restriction sites
-
Gietz R.D., Sugino A. New yeast-Escherichia coli shuttle vectors constructed with in vitro mutagenized yeast genes lacking six-base pair restriction sites. Gene 1988, 74:527-534.
-
(1988)
Gene
, vol.74
, pp. 527-534
-
-
Gietz, R.D.1
Sugino, A.2
-
47
-
-
0025979877
-
Targeting, disruption, replacement, and allele rescue: integrative DNA transformation in yeast
-
Rothstein R. Targeting, disruption, replacement, and allele rescue: integrative DNA transformation in yeast. Methods Enzymol. 1991, 194:281-301.
-
(1991)
Methods Enzymol.
, vol.194
, pp. 281-301
-
-
Rothstein, R.1
-
48
-
-
0030840519
-
Heterologous HIS3 marker and GFP reporter modules for PCR-targeting in Saccharomyces cerevisiae
-
Wach A., Brachat A., Alberti-Segui C., Rebischung C., Philippsen P. Heterologous HIS3 marker and GFP reporter modules for PCR-targeting in Saccharomyces cerevisiae. Yeast 1997, 13:1065-1075.
-
(1997)
Yeast
, vol.13
, pp. 1065-1075
-
-
Wach, A.1
Brachat, A.2
Alberti-Segui, C.3
Rebischung, C.4
Philippsen, P.5
-
49
-
-
0026562884
-
Improved method for high efficiency transformation of intact yeast cells
-
Gietz D., St Jean A., Woods R.A., Schiestl R.H. Improved method for high efficiency transformation of intact yeast cells. Nucleic Acids Res. 1992, 20:1425.
-
(1992)
Nucleic Acids Res.
, vol.20
, pp. 1425
-
-
Gietz, D.1
St Jean, A.2
Woods, R.A.3
Schiestl, R.H.4
-
50
-
-
0036270543
-
Transformation of yeast by lithium acetate/single-stranded carrier DNA/polyethylene glycol method
-
Gietz R.D., Woods R.A. Transformation of yeast by lithium acetate/single-stranded carrier DNA/polyethylene glycol method. Methods Enzymol. 2002, 350:87-96.
-
(2002)
Methods Enzymol.
, vol.350
, pp. 87-96
-
-
Gietz, R.D.1
Woods, R.A.2
-
51
-
-
0001313534
-
The distribution of mutants in bacterial populations
-
Lea D.E., Coulson C.A. The distribution of mutants in bacterial populations. J. Genet. 1948, 49:248-264.
-
(1948)
J. Genet.
, vol.49
, pp. 248-264
-
-
Lea, D.E.1
Coulson, C.A.2
-
52
-
-
0026709385
-
Sister chromatids are preferred over homologs as substrates for recombinational repair in Saccharomyces cerevisiae
-
Kadyk L.C., Hartwell L.H. Sister chromatids are preferred over homologs as substrates for recombinational repair in Saccharomyces cerevisiae. Genetics 1992, 132:387-402.
-
(1992)
Genetics
, vol.132
, pp. 387-402
-
-
Kadyk, L.C.1
Hartwell, L.H.2
-
53
-
-
0023404051
-
Recombinational substrates designed to study recombination between unique and repetitive sequences in vivo
-
Fasullo M.T., Davis R.W. Recombinational substrates designed to study recombination between unique and repetitive sequences in vivo. Proc. Natl. Acad. Sci. U.S.A. 1987, 84:6215-6219.
-
(1987)
Proc. Natl. Acad. Sci. U.S.A.
, vol.84
, pp. 6215-6219
-
-
Fasullo, M.T.1
Davis, R.W.2
-
54
-
-
28444470501
-
Human DNA polymerase eta promotes DNA synthesis from strand invasion intermediates of homologous recombination
-
McIlwraith M.J., Vaisman A., Liu Y., Fanning E., Woodgate R., West S.C. Human DNA polymerase eta promotes DNA synthesis from strand invasion intermediates of homologous recombination. Mol. Cell 2005, 20:783-792.
-
(2005)
Mol. Cell
, vol.20
, pp. 783-792
-
-
McIlwraith, M.J.1
Vaisman, A.2
Liu, Y.3
Fanning, E.4
Woodgate, R.5
West, S.C.6
-
55
-
-
0013997442
-
Frameshift mutations and the genetic code. This paper is dedicated to Professor Theodosius Dobzhansky on the occasion of his 66th birthday
-
Streisinger G., Okada Y., Emrich J., Newton J., Tsugita A., Terzaghi E., Inouye M. Frameshift mutations and the genetic code. This paper is dedicated to Professor Theodosius Dobzhansky on the occasion of his 66th birthday. Cold Spring Harb. Symp. Quant. Biol. 1966, 31:77-84.
-
(1966)
Cold Spring Harb. Symp. Quant. Biol.
, vol.31
, pp. 77-84
-
-
Streisinger, G.1
Okada, Y.2
Emrich, J.3
Newton, J.4
Tsugita, A.5
Terzaghi, E.6
Inouye, M.7
-
56
-
-
0030000946
-
Genetic requirements for the single-strand annealing pathway of double-strand break repair in Saccharomyces cerevisiae
-
Ivanov E.L., Sugawara N., Fishman-Lobell J., Haber J.E. Genetic requirements for the single-strand annealing pathway of double-strand break repair in Saccharomyces cerevisiae. Genetics 1996, 142:693-704.
-
(1996)
Genetics
, vol.142
, pp. 693-704
-
-
Ivanov, E.L.1
Sugawara, N.2
Fishman-Lobell, J.3
Haber, J.E.4
-
57
-
-
0026530911
-
Characterization of double-strand break-induced recombination: homology requirements and single-stranded DNA formation
-
Sugawara N., Haber J.E. Characterization of double-strand break-induced recombination: homology requirements and single-stranded DNA formation. Mol. Cell. Biol. 1992, 12:563-575.
-
(1992)
Mol. Cell. Biol.
, vol.12
, pp. 563-575
-
-
Sugawara, N.1
Haber, J.E.2
-
58
-
-
28444462167
-
Dual roles for DNA polymerase eta in homologous DNA recombination and translesion DNA synthesis
-
Kawamoto T., Araki K., Sonoda E., Yamashita Y.M., Harada K., Kikuchi K., Masutani C., Hanaoka F., Nozaki K., Hashimoto N., Takeda S. Dual roles for DNA polymerase eta in homologous DNA recombination and translesion DNA synthesis. Mol. Cell 2005, 20:793-799.
-
(2005)
Mol. Cell
, vol.20
, pp. 793-799
-
-
Kawamoto, T.1
Araki, K.2
Sonoda, E.3
Yamashita, Y.M.4
Harada, K.5
Kikuchi, K.6
Masutani, C.7
Hanaoka, F.8
Nozaki, K.9
Hashimoto, N.10
Takeda, S.11
-
59
-
-
70449672959
-
PCNA is required for initiation of recombination-associated DNA synthesis by DNA polymerase delta
-
Li X., Stith C.M., Burgers P.M., Heyer W.D. PCNA is required for initiation of recombination-associated DNA synthesis by DNA polymerase delta. Mol. Cell 2009, 36:704-713.
-
(2009)
Mol. Cell
, vol.36
, pp. 704-713
-
-
Li, X.1
Stith, C.M.2
Burgers, P.M.3
Heyer, W.D.4
-
60
-
-
0036682979
-
Translesion DNA synthesis in eukaryotes: a one- or two-polymerase affair
-
Prakash S., Prakash L. Translesion DNA synthesis in eukaryotes: a one- or two-polymerase affair. Genes Dev. 2002, 16:1872-1883.
-
(2002)
Genes Dev.
, vol.16
, pp. 1872-1883
-
-
Prakash, S.1
Prakash, L.2
-
61
-
-
0030443024
-
DNA polymerase zeta and the control of DNA damage induced mutagenesis in eukaryotes
-
Lawrence C.W., Hinkle D.C. DNA polymerase zeta and the control of DNA damage induced mutagenesis in eukaryotes. Cancer Surv. 1996, 28:21-31.
-
(1996)
Cancer Surv.
, vol.28
, pp. 21-31
-
-
Lawrence, C.W.1
Hinkle, D.C.2
-
63
-
-
0023652384
-
A genetic analysis of dicentric minichromosomes in Saccharomyces cerevisiae
-
Koshland D., Rutledge L., Fitzgerald-Hayes M., Hartwell L.H. A genetic analysis of dicentric minichromosomes in Saccharomyces cerevisiae. Cell 1987, 48:801-812.
-
(1987)
Cell
, vol.48
, pp. 801-812
-
-
Koshland, D.1
Rutledge, L.2
Fitzgerald-Hayes, M.3
Hartwell, L.H.4
-
64
-
-
0030812904
-
Budding yeast Rad50, Mre11, Xrs2, and Hdf1, but not Rad52, are involved in the formation of deletions on a dicentric plasmid
-
Tsukamoto Y., Kato J., Ikeda H. Budding yeast Rad50, Mre11, Xrs2, and Hdf1, but not Rad52, are involved in the formation of deletions on a dicentric plasmid. Mol. Gen. Genet. 1997, 255:543-547.
-
(1997)
Mol. Gen. Genet.
, vol.255
, pp. 543-547
-
-
Tsukamoto, Y.1
Kato, J.2
Ikeda, H.3
-
65
-
-
0035860750
-
Homologous pairing promoted by the human Rad52 protein
-
Kagawa W., Kurumizaka H., Ikawa S., Yokoyama S., Shibata T. Homologous pairing promoted by the human Rad52 protein. J. Biol. Chem. 2001, 276:35201-35208.
-
(2001)
J. Biol. Chem.
, vol.276
, pp. 35201-35208
-
-
Kagawa, W.1
Kurumizaka, H.2
Ikawa, S.3
Yokoyama, S.4
Shibata, T.5
-
66
-
-
0028079823
-
Use of a chromosomal inverted repeat to demonstrate that the RAD51 and RAD52 genes of Saccharomyces cerevisiae have different roles in mitotic recombination
-
Rattray A.J., Symington L.S. Use of a chromosomal inverted repeat to demonstrate that the RAD51 and RAD52 genes of Saccharomyces cerevisiae have different roles in mitotic recombination. Genetics 1994, 138:587-595.
-
(1994)
Genetics
, vol.138
, pp. 587-595
-
-
Rattray, A.J.1
Symington, L.S.2
-
67
-
-
0029947714
-
Double-strand break repair in the absence of RAD51 in yeast: a possible role for break-induced DNA replication
-
Malkova A., Ivanov E.L., Haber J.E. Double-strand break repair in the absence of RAD51 in yeast: a possible role for break-induced DNA replication. Proc. Natl. Acad. Sci. U.S.A. 1996, 93:7131-7136.
-
(1996)
Proc. Natl. Acad. Sci. U.S.A.
, vol.93
, pp. 7131-7136
-
-
Malkova, A.1
Ivanov, E.L.2
Haber, J.E.3
-
68
-
-
34147205098
-
Inverted DNA repeats channel repair of distant double-strand breaks into chromatid fusions and chromosomal rearrangements
-
VanHulle K., Lemoine F.J., Narayanan V., Downing B., Hull K., McCullough C., Bellinger M., Lobachev K., Petes T.D., Malkova A. Inverted DNA repeats channel repair of distant double-strand breaks into chromatid fusions and chromosomal rearrangements. Mol. Cell. Biol. 2007, 27:2601-2614.
-
(2007)
Mol. Cell. Biol.
, vol.27
, pp. 2601-2614
-
-
VanHulle, K.1
Lemoine, F.J.2
Narayanan, V.3
Downing, B.4
Hull, K.5
McCullough, C.6
Bellinger, M.7
Lobachev, K.8
Petes, T.D.9
Malkova, A.10
-
69
-
-
0034124053
-
Conversion of topoisomerase I cleavage complexes on the leading strand of ribosomal DNA into 5'-phosphorylated DNA double-strand breaks by replication runoff
-
Strumberg D., Pilon A.A., Smith M., Hickey R., Malkas L., Pommier Y. Conversion of topoisomerase I cleavage complexes on the leading strand of ribosomal DNA into 5'-phosphorylated DNA double-strand breaks by replication runoff. Mol. Cell. Biol. 2000, 20:3977-3987.
-
(2000)
Mol. Cell. Biol.
, vol.20
, pp. 3977-3987
-
-
Strumberg, D.1
Pilon, A.A.2
Smith, M.3
Hickey, R.4
Malkas, L.5
Pommier, Y.6
-
70
-
-
84855632658
-
-
Zur Funktion des MPH1-Gens von Saccharomyces cerevisiae bei der rekombinativen Umgehung von replikationsarretierenden DNA-Schäden. Ph.D. thesis, Georg-August-Universität Göttingen, Göttingen
-
K.A. Schürer, Zur Funktion des MPH1-Gens von Saccharomyces cerevisiae bei der rekombinativen Umgehung von replikationsarretierenden DNA-Schäden. Ph.D. thesis, Georg-August-Universität Göttingen, Göttingen, 2003.
-
(2003)
-
-
Schürer, K.A.1
-
71
-
-
73349127026
-
Cohesin: its roles and mechanisms
-
Nasmyth K., Haering C.H. Cohesin: its roles and mechanisms. Annu. Rev. Genet. 2009, 43:525-558.
-
(2009)
Annu. Rev. Genet.
, vol.43
, pp. 525-558
-
-
Nasmyth, K.1
Haering, C.H.2
-
72
-
-
0038799991
-
Multiple pathways of recombination induced by double-strand breaks in Saccharomyces cerevisiae
-
Paques F., Haber J.E. Multiple pathways of recombination induced by double-strand breaks in Saccharomyces cerevisiae. Microbiol. Mol. Biol. Rev. 1999, 63:349-404.
-
(1999)
Microbiol. Mol. Biol. Rev.
, vol.63
, pp. 349-404
-
-
Paques, F.1
Haber, J.E.2
-
73
-
-
0035338254
-
RAD51-independent break-induced replication to repair a broken chromosome depends on a distant enhancer site
-
Malkova A., Signon L., Schaefer C.B., Naylor M.L., Theis J.F., Newlon C.S., Haber J.E. RAD51-independent break-induced replication to repair a broken chromosome depends on a distant enhancer site. Genes Dev. 2001, 15:1055-1060.
-
(2001)
Genes Dev.
, vol.15
, pp. 1055-1060
-
-
Malkova, A.1
Signon, L.2
Schaefer, C.B.3
Naylor, M.L.4
Theis, J.F.5
Newlon, C.S.6
Haber, J.E.7
-
74
-
-
29544437558
-
Multiple mechanisms control chromosome integrity after replication fork uncoupling and restart at irreparable UV lesions
-
Lopes M., Foiani M., Sogo J.M. Multiple mechanisms control chromosome integrity after replication fork uncoupling and restart at irreparable UV lesions. Mol. Cell 2006, 21:15-27.
-
(2006)
Mol. Cell
, vol.21
, pp. 15-27
-
-
Lopes, M.1
Foiani, M.2
Sogo, J.M.3
-
75
-
-
31844456472
-
Replication fork reactivation downstream of a blocked nascent leading strand
-
Heller R.C., Marians K.J. Replication fork reactivation downstream of a blocked nascent leading strand. Nature 2006, 439:557-562.
-
(2006)
Nature
, vol.439
, pp. 557-562
-
-
Heller, R.C.1
Marians, K.J.2
-
76
-
-
0037470059
-
Cleavage of model replication forks by fission yeast Mus81-Eme1 and budding yeast Mus81-Mms4
-
Whitby M.C., Osman F., Dixon J. Cleavage of model replication forks by fission yeast Mus81-Eme1 and budding yeast Mus81-Mms4. J. Biol. Chem. 2003, 278:6928-6935.
-
(2003)
J. Biol. Chem.
, vol.278
, pp. 6928-6935
-
-
Whitby, M.C.1
Osman, F.2
Dixon, J.3
-
77
-
-
0017298802
-
A model for replication repair in mammalian cells
-
Higgins N.P., Kato K., Strauss B. A model for replication repair in mammalian cells. J. Mol. Biol. 1976, 101:417-425.
-
(1976)
J. Mol. Biol.
, vol.101
, pp. 417-425
-
-
Higgins, N.P.1
Kato, K.2
Strauss, B.3
-
78
-
-
0017109724
-
Replicative bypass repair of ultraviolet damage to DNA of mammalian cells: caffeine sensitive and caffeine resistant mechanisms
-
Fujiwara Y., Tatsumi M. Replicative bypass repair of ultraviolet damage to DNA of mammalian cells: caffeine sensitive and caffeine resistant mechanisms. Mutat. Res. 1976, 37:91-110.
-
(1976)
Mutat. Res.
, vol.37
, pp. 91-110
-
-
Fujiwara, Y.1
Tatsumi, M.2
-
79
-
-
0036683338
-
Genome stability and the processing of damaged replication forks by RecG
-
McGlynn P., Lloyd R.G. Genome stability and the processing of damaged replication forks by RecG. Trends Genet. 2002, 18:413-419.
-
(2002)
Trends Genet.
, vol.18
, pp. 413-419
-
-
McGlynn, P.1
Lloyd, R.G.2
-
80
-
-
33750102798
-
Facing stalled replication forks: the intricacies of doing the right thing
-
Springer-Verlag, Berlin, D.-H. Lankenau (Ed.)
-
Rudolph C., Schürer K.A., Kramer W. Facing stalled replication forks: the intricacies of doing the right thing. Genome Integrity: Facets and Perspectives 2007, 105-152. Springer-Verlag, Berlin. D.-H. Lankenau (Ed.).
-
(2007)
Genome Integrity: Facets and Perspectives
, pp. 105-152
-
-
Rudolph, C.1
Schürer, K.A.2
Kramer, W.3
-
81
-
-
59649102253
-
RAD54 controls access to the invading 3'-OH end after RAD51-mediated DNA strand invasion in homologous recombination in Saccharomyces cerevisiae
-
Li X., Heyer W.D. RAD54 controls access to the invading 3'-OH end after RAD51-mediated DNA strand invasion in homologous recombination in Saccharomyces cerevisiae. Nucleic Acids Res. 2009, 37:638-646.
-
(2009)
Nucleic Acids Res.
, vol.37
, pp. 638-646
-
-
Li, X.1
Heyer, W.D.2
-
82
-
-
0022457421
-
Structure of replicating simian virus 40 minichromosomes. The replication fork, core histone segregation and terminal structures
-
Sogo J.M., Stahl H., Koller T., Knippers R. Structure of replicating simian virus 40 minichromosomes. The replication fork, core histone segregation and terminal structures. J. Mol. Biol. 1986, 189:189-204.
-
(1986)
J. Mol. Biol.
, vol.189
, pp. 189-204
-
-
Sogo, J.M.1
Stahl, H.2
Koller, T.3
Knippers, R.4
-
83
-
-
33847076248
-
Chromatin challenges during DNA replication and repair
-
Groth A., Rocha W., Verreault A., Almouzni G. Chromatin challenges during DNA replication and repair. Cell 2007, 128:721-733.
-
(2007)
Cell
, vol.128
, pp. 721-733
-
-
Groth, A.1
Rocha, W.2
Verreault, A.3
Almouzni, G.4
-
84
-
-
0037131257
-
The Rad51-dependent pairing of long DNA substrates is stabilized by replication protein A
-
Eggler A.L., Inman R.B., Cox M.M. The Rad51-dependent pairing of long DNA substrates is stabilized by replication protein A. J. Biol. Chem. 2002, 277:39280-39288.
-
(2002)
J. Biol. Chem.
, vol.277
, pp. 39280-39288
-
-
Eggler, A.L.1
Inman, R.B.2
Cox, M.M.3
-
85
-
-
65249090885
-
Esc2 and Sgs1 act in functionally distinct branches of the homologous recombination repair pathway in Saccharomyces cerevisiae
-
Mankouri H.W., Ngo H.P., Hickson I.D. Esc2 and Sgs1 act in functionally distinct branches of the homologous recombination repair pathway in Saccharomyces cerevisiae. Mol. Biol. Cell 2009, 20:1683-1694.
-
(2009)
Mol. Biol. Cell
, vol.20
, pp. 1683-1694
-
-
Mankouri, H.W.1
Ngo, H.P.2
Hickson, I.D.3
-
86
-
-
0347987856
-
The Bloom's syndrome helicase suppresses crossing over during homologous recombination
-
Wu L., Hickson I.D. The Bloom's syndrome helicase suppresses crossing over during homologous recombination. Nature 2003, 426:870-874.
-
(2003)
Nature
, vol.426
, pp. 870-874
-
-
Wu, L.1
Hickson, I.D.2
|