메뉴 건너뛰기




Volumn 8, Issue 4, 2005, Pages 385-413

Semi-supervised learning with an imperfect supervisor

Author keywords

Classification Expectation Maximisation; Classification Maximum Likelihood; Imperfect supervision; Semi supervised learnin

Indexed keywords

IMAGE SEGMENTATION; MAXIMUM LIKELIHOOD; MAXIMUM PRINCIPLE; PERSONNEL TRAINING;

EID: 28044467723     PISSN: 02191377     EISSN: 02193116     Source Type: Journal    
DOI: 10.1007/s10115-005-0219-4     Document Type: Article
Times cited : (29)

References (48)
  • 1
    • 85041988041 scopus 로고
    • Statistical diagnosis when basic cases are not classified with certainty
    • Aitchison J, Begg CB (1976) Statistical diagnosis when basic cases are not classified with certainty. Biometrika 63(1):1-12
    • (1976) Biometrika , vol.63 , Issue.1 , pp. 1-12
    • Aitchison, J.1    Begg, C.B.2
  • 2
    • 0003671433 scopus 로고
    • The statistical analysis of compositional data
    • Chapman and Hall London
    • J Aitchison 1986 The statistical analysis of compositional data Chapman and Hall London
    • (1986)
    • Aitchison, J.1
  • 6
    • 0018426274 scopus 로고
    • Multivariate logistic compounds
    • Anderson JA (1979) Multivariate logistic compounds. Biometrika 66(1):17-26
    • (1979) Biometrika , vol.66 , Issue.1 , pp. 17-26
    • Anderson, J.A.1
  • 7
    • 70350335356 scopus 로고
    • Logistic discrimination
    • Krishnaiah PR, Kanal L (eds)
    • Anderson JA (1982) Logistic discrimination. In: Krishnaiah PR, Kanal L (eds) Handbook of statistics, vol. 2, pp 169-191
    • (1982) Handbook of Statistics , vol.2 , pp. 169-191
    • Anderson, J.A.1
  • 10
    • 3142725535 scopus 로고    scopus 로고
    • Semi-supervised learning on Riemannian manifiolds
    • 10.1023/B:MACH.0000033120.25363.1e
    • Belkin M, Niyogi P. (2004) Semi-supervised learning on Riemannian manifiolds. Machine Learn 56:209-223 10.1023/B:MACH.0000033120.25363.1e
    • (2004) Machine Learn , vol.56 , pp. 209-223
    • Belkin, M.1    Niyogi, P.2
  • 12
    • 0003408496 scopus 로고    scopus 로고
    • UCI Repository of machine learning databases
    • url: University of California, Irvine, Department of Information and Computer Sciences
    • Blake CL, Merz CJ (1998) {UCI} Repository of machine learning databases, url: http://www.ics.uci.edu/~mlearn/MLRepository.html. University of California, Irvine, Department of Information and Computer Sciences
    • 1998
    • Blake, C.L.1    Merz, C.J.2
  • 14
    • 0001662441 scopus 로고    scopus 로고
    • The relative value of labeled and unlabeled samples in pattern recognition with an unknown mixing parameter
    • 10.1109/18.556600
    • Castelli V, Cover TM (1996) The relative value of labeled and unlabeled samples in pattern recognition with an unknown mixing parameter. IEEE Trans Inform Theory 42(6):2102-2117 10.1109/18.556600
    • (1996) IEEE Trans Inform Theory , vol.42 , Issue.6 , pp. 2102-2117
    • Castelli, V.1    Cover, T.M.2
  • 15
    • 0001626339 scopus 로고
    • EM A classification EM algorithm for clustering and two stochastic versions
    • 10.1016/0167-9473(92)90042-E
    • Celeux G, Govaert G (1992) A classification EM algorithm for clustering and two stochastic versions. Comput Stat Data Anal 14(3):315-332 10.1016/0167-9473(92)90042-E
    • (1992) Comput. Stat. Data Anal. , vol.14 , Issue.3 , pp. 315-332
    • Celeux, G.1    Govaert, G.2
  • 16
    • 51949086172 scopus 로고    scopus 로고
    • Semi-supervised classification by low density separation
    • Chapelle O, Zien A (2005) Semi-supervised classification by low density separation. AI Stat
    • (2005) AI. Stat.
    • Chapelle, O.1    Zien, A.2
  • 17
    • 0011210217 scopus 로고
    • Linear discriminant analysis with misallocation in training samples
    • Chhikara RS, McKeon J (1992) Linear discriminant analysis with misallocation in training samples. J Am Stat Assoc 79:899-906
    • (1992) J. Am. Stat. Assoc. , vol.79 , pp. 899-906
    • Chhikara, R.S.1    McKeon, J.2
  • 18
    • 28044453278 scopus 로고
    • Learning with imperfectly labeled patterns
    • Chittineni CB (1982) Learning with imperfectly labeled patterns. Pattern Recog 12(5):169-191
    • (1982) Pattern Recog. , vol.12 , Issue.5 , pp. 169-191
    • Chittineni, C.B.1
  • 21
    • 0005986550 scopus 로고
    • Learning classification with unlabeled data
    • MIT Press Cambridge Denver, USA
    • VR DeSa 1994 Learning classification with unlabeled data Advances in neural information processing systems, Denver, USA, vol. 6 MIT Press Cambridge 112-119
    • (1994) Advances in Neural Information Processing Systems , vol.6 , pp. 112-119
    • DeSa, V.R.1
  • 22
    • 0002629270 scopus 로고
    • Maximum likelihood from incomplete data via the em algorithm
    • Dempster A, Laird N, Rubin D (1977) Maximum likelihood from incomplete data via the em algorithm. J R Stat Soc 39(1):1-38
    • (1977) J. R. Stat. Soc. , vol.39 , Issue.1 , pp. 1-38
    • Dempster, A.1    Laird, N.2    Rubin, D.3
  • 25
    • 0023175625 scopus 로고
    • Discriminant analysis with a stochastic suprevisor
    • 10.1016/0031-3203(87)90062-8
    • Krishnan T, Nandy SC (1987) Discriminant analysis with a stochastic suprevisor. Pattern Recog 20(4):379-384 10.1016/0031-3203(87)90062-8
    • (1987) Pattern Recog. , vol.20 , Issue.4 , pp. 379-384
    • Krishnan, T.1    Nandy, S.C.2
  • 26
    • 0024165228 scopus 로고
    • Efficiency of learning with imperfect supervision
    • 183-188 10.1016/0031-3203(88)90026-X
    • Krishnan T (1988) Efficiency of learning with imperfect supervision. Pattern Recog 21:183-188 10.1016/0031-3203(88)90026-X
    • (1988) Pattern Recog. , vol.21
    • Krishnan, T.1
  • 29
    • 0016093646 scopus 로고
    • Discriminant functions when the initial samples are misclassified. II. Nonrandom misclassification models
    • Lachenbrunch PA (1974) Discriminant functions when the initial samples are misclassified. II. Nonrandom misclassification models. Technometrics 16:419-424
    • (1974) Technometrics , vol.16 , pp. 419-424
    • Lachenbrunch, P.A.1
  • 30
    • 0011239012 scopus 로고
    • Asymptotic results for discriminant analysis when the initial samples are misclassified
    • McLachlan GJ (1972) Asymptotic results for discriminant analysis when the initial samples are misclassified. Technometrics 14:415-422
    • (1972) Technometrics , vol.14 , pp. 415-422
    • McLachlan, G.J.1
  • 31
    • 0010808571 scopus 로고
    • Updating a discriminant function in basis of unclassified data
    • McLachlan GJ, Ganesalingam S (1982) Updating a discriminant function in basis of unclassified data. Comm Stat Simulat Comput 11(6):753-767
    • (1982) Comm. Stat. Simulat. Comput. , vol.11 , Issue.6 , pp. 753-767
    • McLachlan, G.J.1    Ganesalingam, S.2
  • 32
    • 0004027527 scopus 로고
    • Discriminant analysis and statistical pattern recognition
    • Wiley New York
    • GJ McLachlan 1992 Discriminant analysis and statistical pattern recognition Wiley New York
    • (1992)
    • McLachlan, G.J.1
  • 33
    • 84898980291 scopus 로고    scopus 로고
    • A mixture of experts classifier with learning based on both labeled and unlabeled data
    • MIT Press Cambridge Denver, USA
    • D Miller H Uyar 1997 A mixture of experts classifier with learning based on both labeled and unlabeled data Advances in neural information processing systems, Denver, USA, vol. 9 MIT Press Cambridge 571-577
    • (1997) Advances in Neural Information Processing Systems , vol.9 , pp. 571-577
    • Miller, D.1    Uyar, H.2
  • 34
    • 78651426319 scopus 로고    scopus 로고
    • Feature selection for classification based on text hierarchy
    • Working notes of learning from text and the web, conference automated learning and discovery, Carnegie Mellon University, Pittsburgh
    • Mladenic D, Grobelnik M (1998) Feature selection for classification based on text hierarchy. Working notes of learning from text and the web, conference automated learning and discovery, Carnegie Mellon University, Pittsburgh
    • (1998)
    • Mladenic, D.1    Grobelnik, M.2
  • 35
    • 0001704042 scopus 로고
    • Estimation problems with data from a mixture
    • Murray GD, Titterington DM (1978) Estimation problems with data from a mixture. Appl Stat 27(3):325-334
    • (1978) Appl. Stat. , vol.27 , Issue.3 , pp. 325-334
    • Murray, G.D.1    Titterington, D.M.2
  • 37
    • 0033886806 scopus 로고    scopus 로고
    • Text classification from labeled and unlabeled documents using EM
    • 10.1023/A:1007692713085
    • Nigam K, McCallum AK, Thrun S, Mitchell T (2000) Text classification from labeled and unlabeled documents using EM. Mach Learn 39(2/ 3):127-163 10.1023/A:1007692713085
    • (2000) Mach. Learn. , vol.39 , Issue.2-3 , pp. 127-163
    • Nigam, K.1    McCallum, A.K.2    Thrun, S.3    Mitchell, T.4
  • 38
    • 0000734588 scopus 로고
    • Normal discrimination with unclassified observations
    • O'Neill TJ (1978) Normal discrimination with unclassified observations. J Am Stat Assoc 73(364):821-826
    • (1978) J. Am. Stat. Assoc. , vol.73 , Issue.364 , pp. 821-826
    • O'Neill, T.J.1
  • 40
    • 84898984897 scopus 로고    scopus 로고
    • Nonlinear discriminant analysis using kernel functions
    • Denver, USA MIT Press Cambridge
    • V Roth V Steinhage 1999 Nonlinear discriminant analysis using kernel functions Advances in neural information processing systems, Denver, USA, vol. 12 MIT Press Cambridge 568-574
    • (1999) Advances in Neural Information Processing Systems , vol.12 , pp. 568-574
    • Roth, V.1    Steinhage, V.2
  • 41
    • 0005977840 scopus 로고    scopus 로고
    • Learning with labeled and unlabeled data
    • University of Edinburgh, Technical report. www.dai.ed.ac.uk/homes/seeger/ papers/review.pdf
    • Seeger M (2000) Learning with labeled and unlabeled data. University of Edinburgh, Technical report. www.dai.ed.ac.uk/homes/seeger/papers/ review.pdf
    • (2000)
    • Seeger, M.1
  • 43
    • 84899033220 scopus 로고    scopus 로고
    • Kernel expansions with unlabeled examples
    • Vancouver, British Columbia, Canada
    • Szummer M, Jaakkola T (2001) Kernel expansions with unlabeled examples. Advances in Neural Information Processing Systems 13, Vancouver, British Columbia, Canada, pp 626-632
    • (2001) Advances in Neural Information Processing Systems , vol.13 , pp. 626-632
    • Szummer, M.1    Jaakkola, T.2
  • 44
    • 0002643871 scopus 로고
    • Clustering criteria and multivariate normal mixture
    • Symons MJ (1981) Clustering criteria and multivariate normal mixture. Biometrics 37(1):35-43
    • (1981) Biometrics , vol.37 , Issue.1 , pp. 35-43
    • Symons, M.J.1
  • 45
    • 0001572432 scopus 로고    scopus 로고
    • A comparison of some error estimates for neural networks models
    • Tibshirani R (1996) A comparison of some error estimates for neural networks models. Neural Comput 8:182-183
    • (1996) Neural. Comput. , vol.8 , pp. 182-183
    • Tibshirani, R.1
  • 46
    • 0024475951 scopus 로고
    • An alternative stochastic supervisor in discriminant analysis
    • 10.1016/0031-3203(89)90041-1
    • Titterington DM (1989) An alternative stochastic supervisor in discriminant analysis. Pattern Recog 22(1):91-95 10.1016/ 0031-3203(89)90041-1
    • (1989) Pattern Recog. , vol.22 , Issue.1 , pp. 91-95
    • Titterington, D.M.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.