-
1
-
-
57349154278
-
A boosting algorithm for learning bipartite ranking functions with partially labeled data
-
Amini, M.-R., Truong, T.-V., & Goutte, C., 2008. A boosting algorithm for learning bipartite ranking functions with partially labeled data. In Proceedings of the 31st annual international ACM SIGIR conference on research and development in information retrieval (pp. 99-106).
-
(2008)
Proceedings of the 31st annual international ACM SIGIR conference on research and development in information retrieval
, pp. 99-106
-
-
Amini, M.-R.1
Truong, T.-V.2
Goutte, C.3
-
2
-
-
0000492326
-
Learning from noisy examples
-
Angluin D., and Laird P. Learning from noisy examples. Machine Learning 2 4 (1988) 343-370
-
(1988)
Machine Learning
, vol.2
, Issue.4
, pp. 343-370
-
-
Angluin, D.1
Laird, P.2
-
3
-
-
0017515424
-
Local feedback in full-text retrieval systems
-
Attar R., and Fraenkel A.S. Local feedback in full-text retrieval systems. Journal of the ACM 24 3 (1977) 397-417
-
(1977)
Journal of the ACM
, vol.24
, Issue.3
, pp. 397-417
-
-
Attar, R.1
Fraenkel, A.S.2
-
5
-
-
84898930761
-
Co-training and expansion: Towards bridging theory and practice
-
Cambridge, MA: MIT Press
-
Balcan, M.-F., Blum, A., & Yang, K. (2005). Co-training and expansion: towards bridging theory and practice. In Advances in neural information processing systems (Vol. 17, pp. 89-96). Cambridge, MA: MIT Press.
-
(2005)
Advances in neural information processing systems
, vol.17
, pp. 89-96
-
-
Balcan, M.-F.1
Blum, A.2
Yang, K.3
-
6
-
-
3142725535
-
Semi-supervised learning on riemannian manifolds
-
Belkin M., and Niyogi P. Semi-supervised learning on riemannian manifolds. Machine Learning 56 1-3 (2004) 209-239
-
(2004)
Machine Learning
, vol.56
, Issue.1-3
, pp. 209-239
-
-
Belkin, M.1
Niyogi, P.2
-
9
-
-
33749246419
-
Efficient co-regularised least squares regression
-
Brefeld, U., Gartner, T., Scheffer, T., & Wrobel, S. (2006). Efficient co-regularised least squares regression. In Proceedings of the 23rd international conference on machine learning (pp. 137-144).
-
(2006)
Proceedings of the 23rd international conference on machine learning
, pp. 137-144
-
-
Brefeld, U.1
Gartner, T.2
Scheffer, T.3
Wrobel, S.4
-
10
-
-
31844446958
-
Learning to rank using gradient descent
-
Burges, C. J. C., Shaked, T., Renshaw, E., Lazier, A., Deeds, M., Hamilton, N. et al. (2005). Learning to rank using gradient descent. In Proceedings of the 22nd international conference on machine learning (pp. 89-96).
-
(2005)
Proceedings of the 22nd international conference on machine learning
, pp. 89-96
-
-
Burges, C.J.C.1
Shaked, T.2
Renshaw, E.3
Lazier, A.4
Deeds, M.5
Hamilton, N.6
-
11
-
-
33750338615
-
Adapting ranking SVM to document retrieval
-
Cao, Y., Xu, J., Li, H., Huang, Y., & Hon, H.-W. (2006). Adapting ranking SVM to document retrieval. In Proceedings of the 29th annual international ACM SIGIR conference on research and development in information retrieval (pp. 186-193).
-
(2006)
Proceedings of the 29th annual international ACM SIGIR conference on research and development in information retrieval
, pp. 186-193
-
-
Cao, Y.1
Xu, J.2
Li, H.3
Huang, Y.4
Hon, H.-W.5
-
12
-
-
34547987951
-
Learning to rank: From pairwise approach to listwise approach
-
Cao, Z., Qin, T., Liu, T.-Y., Tsai, M., & Li, H. (2007). Learning to rank: From pairwise approach to listwise approach. In Proceedings of the 24th international conference on machine learning (pp. 129-136).
-
(2007)
Proceedings of the 24th international conference on machine learning
, pp. 129-136
-
-
Cao, Z.1
Qin, T.2
Liu, T.-Y.3
Tsai, M.4
Li, H.5
-
13
-
-
33749252873
-
-
MIT Press, Cambridge, MA
-
Chapelle O., Schölkopf B., and Zien A. Semi-supervised learning (2006), MIT Press, Cambridge, MA
-
(2006)
Semi-supervised learning
-
-
Chapelle, O.1
Schölkopf, B.2
Zien, A.3
-
16
-
-
36448967787
-
A combined component approach for finding collection-adapted ranking functions based on genetic programming
-
de Almeida, H. M., Gonçalves, M. A., Cristo, M., & Calado, P. (2007). A combined component approach for finding collection-adapted ranking functions based on genetic programming. In Proceedings of the 30th annual international ACM SIGIR conference on research and development in information retrieval (pp. 399-406).
-
(2007)
Proceedings of the 30th annual international ACM SIGIR conference on research and development in information retrieval
, pp. 399-406
-
-
de Almeida, H.M.1
Gonçalves, M.A.2
Cristo, M.3
Calado, P.4
-
19
-
-
2942601433
-
A generic ranking function discovery framework by genetic programming for information retrieval
-
Fan W., Gordon M.D., and Pathak P. A generic ranking function discovery framework by genetic programming for information retrieval. Information Processing and Management 40 4 (2004) 587-602
-
(2004)
Information Processing and Management
, vol.40
, Issue.4
, pp. 587-602
-
-
Fan, W.1
Gordon, M.D.2
Pathak, P.3
-
21
-
-
84885571476
-
Discriminant model for information retrieval
-
Gao, J., Qi, H., Xia, X., & Nie, J.-Y. (2005). Discriminant model for information retrieval. In Proceedings of the 28th annual international ACM SIGIR conference on research and development in information retrieval (pp. 290-297).
-
(2005)
Proceedings of the 28th annual international ACM SIGIR conference on research and development in information retrieval
, pp. 290-297
-
-
Gao, J.1
Qi, H.2
Xia, X.3
Nie, J.-Y.4
-
24
-
-
0008371352
-
Large margin rank boundaries for ordinal regression
-
A.J. Smola, P. Bartlett, B. Schölkopf, D. Schuurmans Eds
-
Herbrich, R., Graepel, T., & Obermayer, K. (2000). Large margin rank boundaries for ordinal regression. In A.J. Smola, P. Bartlett, B. Schölkopf, D. Schuurmans (Eds.), Advances in large margin classifiers (pp. 115-132).
-
(2000)
Advances in large margin classifiers
, pp. 115-132
-
-
Herbrich, R.1
Graepel, T.2
Obermayer, K.3
-
25
-
-
85030313899
-
OHSUMED: An iterative retrieval evaluation and new large test collection for research
-
Hersh, W. R., Buckley, C., Leone, T., & Hickam, D. H. (1994). OHSUMED: An iterative retrieval evaluation and new large test collection for research. In Proceedings of the 17th annual international ACM SIGIR conference on research and development in information retrieval (pp. 192-201).
-
(1994)
Proceedings of the 17th annual international ACM SIGIR conference on research and development in information retrieval
, pp. 192-201
-
-
Hersh, W.R.1
Buckley, C.2
Leone, T.3
Hickam, D.H.4
-
26
-
-
84871054171
-
Applying data mining to pseudo-relevance feedback for high performance text retrieval
-
Huang, X., Huang, Y. R., Wen, M., An, A., Liu, Y., & Poon, J. (2006). Applying data mining to pseudo-relevance feedback for high performance text retrieval. In Proceedings of the 6th IEEE international conference on data mining (pp. 295-306).
-
(2006)
Proceedings of the 6th IEEE international conference on data mining
, pp. 295-306
-
-
Huang, X.1
Huang, Y.R.2
Wen, M.3
An, A.4
Liu, Y.5
Poon, J.6
-
29
-
-
0034790672
-
Document language models, query models, and risk minimization for information retrieval
-
Lafferty, J., & Zhai, C. (2001). Document language models, query models, and risk minimization for information retrieval. In: Proceedings of the 24th annual international ACM SIGIR conference on research and development in information retrieval (pp. 111-119).
-
(2001)
Proceedings of the 24th annual international ACM SIGIR conference on research and development in information retrieval
, pp. 111-119
-
-
Lafferty, J.1
Zhai, C.2
-
30
-
-
84880798303
-
Learning to classify text using positive and unlabeled data
-
international joint conference on artificial intelligence pp
-
Li, X., & Liu, B. (2003). Learning to classify text using positive and unlabeled data. In: Proceedings of the 19th international joint conference on artificial intelligence (pp. 587-594).
-
(2003)
Proceedings of the 19th
, pp. 587-594
-
-
Li, X.1
Liu, B.2
-
31
-
-
78149306870
-
Building text classifiers using positive and unlabeled examples
-
Liu, B., Dai, Y., Li, X., Lee, W. S., & Yu, P. S. (2003). Building text classifiers using positive and unlabeled examples. In Proceedings of the third IEEE international conference on data mining (pp. 179-188).
-
(2003)
Proceedings of the third IEEE international conference on data mining
, pp. 179-188
-
-
Liu, B.1
Dai, Y.2
Li, X.3
Lee, W.S.4
Yu, P.S.5
-
33
-
-
84898980291
-
A mixture of experts classifier with learning based on both labeled and unlabeled data
-
MIT Press, Cambridge, MA
-
Miller D.J., and Uyar H.S. A mixture of experts classifier with learning based on both labeled and unlabeled data. Advances in neural information processing systems Vol. 9 (1997), MIT Press, Cambridge, MA 571-577
-
(1997)
Advances in neural information processing systems
, vol.9
, pp. 571-577
-
-
Miller, D.J.1
Uyar, H.S.2
-
36
-
-
0033886806
-
Text classification from labeled and unlabeled documents using em
-
Nigam K., McCallum A.K., Thrun S., and Mitchell T. Text classification from labeled and unlabeled documents using em. Machine Learning 39 2-3 (2000) 103-134
-
(2000)
Machine Learning
, vol.39
, Issue.2-3
, pp. 103-134
-
-
Nigam, K.1
McCallum, A.K.2
Thrun, S.3
Mitchell, T.4
-
37
-
-
64549087715
-
-
Robertson, S., & Hull, D. A. (2000). The TREC-9 filtering track final report. In Proceedings of the 9th text retrieval conference (pp. 25-40).
-
Robertson, S., & Hull, D. A. (2000). The TREC-9 filtering track final report. In Proceedings of the 9th text retrieval conference (pp. 25-40).
-
-
-
-
38
-
-
0001560952
-
Relevance feedback in information retrieval
-
In The
-
Rocchio, J. J. (1971). Relevance feedback in information retrieval. In The SMART retrieval system (pp. 313-323).
-
(1971)
SMART retrieval system
, pp. 313-323
-
-
Rocchio, J.J.1
-
41
-
-
0028499630
-
The effect of unlabeled samples in reducing the small sample size problem and mitigating the Hughes phenomenon
-
Shahshahani B., and Landgrebe D. The effect of unlabeled samples in reducing the small sample size problem and mitigating the Hughes phenomenon. IEEE Transactions on Geoscience and remote sensing 32 5 (1994) 1087-1095
-
(1994)
IEEE Transactions on Geoscience and remote sensing
, vol.32
, Issue.5
, pp. 1087-1095
-
-
Shahshahani, B.1
Landgrebe, D.2
-
44
-
-
17444418317
-
Learning to rank
-
Trotman A. Learning to rank. Information Retrieval 8 3 (2005) 359-381
-
(2005)
Information Retrieval
, vol.8
, Issue.3
, pp. 359-381
-
-
Trotman, A.1
-
45
-
-
51049109504
-
Ranking with unlabeled data: A first study
-
Usunier, N., Truong, V., Amini, M. R., & Gallinari, P. (2005). Ranking with unlabeled data: A first study. In Proceedings of the NIPS 2005 workshop on learning to rank (pp. 24-28).
-
(2005)
Proceedings of the NIPS 2005 workshop on learning to rank
, pp. 24-28
-
-
Usunier, N.1
Truong, V.2
Amini, M.R.3
Gallinari, P.4
-
48
-
-
36448983903
-
A support vector method for optimizing average precision
-
Yue, Y., Finley, T., Radlinski, F., & Joachims, T. (2007). A support vector method for optimizing average precision. In: Proceedings of the 30th annual international ACM SIGIR conference on research and development in information retrieval (pp. 271-278).
-
(2007)
Proceedings of the 30th annual international ACM SIGIR conference on research and development in information retrieval
, pp. 271-278
-
-
Yue, Y.1
Finley, T.2
Radlinski, F.3
Joachims, T.4
-
49
-
-
84872519314
-
Bayesian co-training
-
Cambridge, MA: MIT Press
-
Yu, S., Krishnapuram, B., Rosales, R., Steck, H., & Rao, R. B. (2007). Bayesian co-training. In Advances in neural information processing systems (Vol. 20). Cambridge, MA: MIT Press.
-
(2007)
Advances in neural information processing systems
, vol.20
-
-
Yu, S.1
Krishnapuram, B.2
Rosales, R.3
Steck, H.4
Rao, R.B.5
-
50
-
-
22944492898
-
Learning with local and global consistency
-
Cambridge, MA: MIT Press
-
Zhou, D., Bousquet, O., Lal, T. N., Weston, J., & Schölkopf, B. (2003). Learning with local and global consistency. In Advances in neural information processing systems (Vol. 17, pp. 1633-1640). Cambridge, MA: MIT Press.
-
(2003)
Advances in neural information processing systems
, vol.17
, pp. 1633-1640
-
-
Zhou, D.1
Bousquet, O.2
Lal, T.N.3
Weston, J.4
Schölkopf, B.5
-
53
-
-
84880742718
-
Semi-supervised regression with co-training
-
international joint conference on artificial intelligence pp
-
Zhou, Z.-H., & Li, M. (2005a). Semi-supervised regression with co-training. In Proceedings of the 19th international joint conference on artificial intelligence (pp. 908-913).
-
(2005)
Proceedings of the 19th
, pp. 908-913
-
-
Zhou, Z.-H.1
Li, M.2
-
54
-
-
28244448186
-
Tri-training: Exploiting unlabeled data using three classifier
-
Zhou Z.-H., and Li M. Tri-training: Exploiting unlabeled data using three classifier. IEEE Transactions on Knowledge and Data Engineering 17 11 (2005) 1529-1541
-
(2005)
IEEE Transactions on Knowledge and Data Engineering
, vol.17
, Issue.11
, pp. 1529-1541
-
-
Zhou, Z.-H.1
Li, M.2
-
56
-
-
36348938695
-
Semi-supervised learning with very few labeled training examples
-
Zhou, Z.-H., Zhan, D.-C., Yang, Q., (2007). Semi-supervised learning with very few labeled training examples. In Proceedings of the 22nd AAAI conference on artificial intelligence (pp. 675-680).
-
(2007)
Proceedings of the 22nd AAAI conference on artificial intelligence
, pp. 675-680
-
-
Zhou, Z.-H.1
Zhan, D.-C.2
Yang, Q.3
-
57
-
-
33745456231
-
Semi-supervised learning literature survey
-
Tech. Rep. 1530, Department of Computer Sciences, University of Wisconsin at Madison Madison, WI. Available from
-
Zhu, X. (2005). Semi-supervised learning literature survey. Tech. Rep. 1530, Department of Computer Sciences, University of Wisconsin at Madison Madison, WI. Available from: http://www.cs.wisc.edu/~jerryzhu/pub/sslsurvey.pdf.
-
(2005)
-
-
Zhu, X.1
|