메뉴 건너뛰기




Volumn 45, Issue 3, 2009, Pages 341-355

Semi-supervised document retrieval

Author keywords

Data mining; Information retrieval; Learning to rank; Machine learning; Semi supervised learning

Indexed keywords

BASELINE METHODS; BENCHMARK DATASETS; DATA LABELING; DATA SETS; DOCUMENT RETRIEVALS; IR MODELS; LABELED DATUM; LABELED DOCUMENTS; LEARNING TO RANK; MACHINE LEARNING; MACHINE LEARNING METHODS; MODEL REPRESENTATIONS; ON-MACHINES; RANKING MODELS; SEMI-SUPERVISED; SEMI-SUPERVISED LEARNING; STOPPING CRITERION; SUPERVISED LEARNING METHODS; UNLABELED DATUM; UNLABELED DOCUMENTS; WEB SEARCHES;

EID: 64549161526     PISSN: 03064573     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.ipm.2008.11.002     Document Type: Article
Times cited : (46)

References (58)
  • 2
    • 0000492326 scopus 로고
    • Learning from noisy examples
    • Angluin D., and Laird P. Learning from noisy examples. Machine Learning 2 4 (1988) 343-370
    • (1988) Machine Learning , vol.2 , Issue.4 , pp. 343-370
    • Angluin, D.1    Laird, P.2
  • 3
    • 0017515424 scopus 로고
    • Local feedback in full-text retrieval systems
    • Attar R., and Fraenkel A.S. Local feedback in full-text retrieval systems. Journal of the ACM 24 3 (1977) 397-417
    • (1977) Journal of the ACM , vol.24 , Issue.3 , pp. 397-417
    • Attar, R.1    Fraenkel, A.S.2
  • 5
    • 84898930761 scopus 로고    scopus 로고
    • Co-training and expansion: Towards bridging theory and practice
    • Cambridge, MA: MIT Press
    • Balcan, M.-F., Blum, A., & Yang, K. (2005). Co-training and expansion: towards bridging theory and practice. In Advances in neural information processing systems (Vol. 17, pp. 89-96). Cambridge, MA: MIT Press.
    • (2005) Advances in neural information processing systems , vol.17 , pp. 89-96
    • Balcan, M.-F.1    Blum, A.2    Yang, K.3
  • 6
    • 3142725535 scopus 로고    scopus 로고
    • Semi-supervised learning on riemannian manifolds
    • Belkin M., and Niyogi P. Semi-supervised learning on riemannian manifolds. Machine Learning 56 1-3 (2004) 209-239
    • (2004) Machine Learning , vol.56 , Issue.1-3 , pp. 209-239
    • Belkin, M.1    Niyogi, P.2
  • 19
    • 2942601433 scopus 로고    scopus 로고
    • A generic ranking function discovery framework by genetic programming for information retrieval
    • Fan W., Gordon M.D., and Pathak P. A generic ranking function discovery framework by genetic programming for information retrieval. Information Processing and Management 40 4 (2004) 587-602
    • (2004) Information Processing and Management , vol.40 , Issue.4 , pp. 587-602
    • Fan, W.1    Gordon, M.D.2    Pathak, P.3
  • 24
    • 0008371352 scopus 로고    scopus 로고
    • Large margin rank boundaries for ordinal regression
    • A.J. Smola, P. Bartlett, B. Schölkopf, D. Schuurmans Eds
    • Herbrich, R., Graepel, T., & Obermayer, K. (2000). Large margin rank boundaries for ordinal regression. In A.J. Smola, P. Bartlett, B. Schölkopf, D. Schuurmans (Eds.), Advances in large margin classifiers (pp. 115-132).
    • (2000) Advances in large margin classifiers , pp. 115-132
    • Herbrich, R.1    Graepel, T.2    Obermayer, K.3
  • 30
    • 84880798303 scopus 로고    scopus 로고
    • Learning to classify text using positive and unlabeled data
    • international joint conference on artificial intelligence pp
    • Li, X., & Liu, B. (2003). Learning to classify text using positive and unlabeled data. In: Proceedings of the 19th international joint conference on artificial intelligence (pp. 587-594).
    • (2003) Proceedings of the 19th , pp. 587-594
    • Li, X.1    Liu, B.2
  • 33
    • 84898980291 scopus 로고    scopus 로고
    • A mixture of experts classifier with learning based on both labeled and unlabeled data
    • MIT Press, Cambridge, MA
    • Miller D.J., and Uyar H.S. A mixture of experts classifier with learning based on both labeled and unlabeled data. Advances in neural information processing systems Vol. 9 (1997), MIT Press, Cambridge, MA 571-577
    • (1997) Advances in neural information processing systems , vol.9 , pp. 571-577
    • Miller, D.J.1    Uyar, H.S.2
  • 36
    • 0033886806 scopus 로고    scopus 로고
    • Text classification from labeled and unlabeled documents using em
    • Nigam K., McCallum A.K., Thrun S., and Mitchell T. Text classification from labeled and unlabeled documents using em. Machine Learning 39 2-3 (2000) 103-134
    • (2000) Machine Learning , vol.39 , Issue.2-3 , pp. 103-134
    • Nigam, K.1    McCallum, A.K.2    Thrun, S.3    Mitchell, T.4
  • 37
    • 64549087715 scopus 로고    scopus 로고
    • Robertson, S., & Hull, D. A. (2000). The TREC-9 filtering track final report. In Proceedings of the 9th text retrieval conference (pp. 25-40).
    • Robertson, S., & Hull, D. A. (2000). The TREC-9 filtering track final report. In Proceedings of the 9th text retrieval conference (pp. 25-40).
  • 38
    • 0001560952 scopus 로고
    • Relevance feedback in information retrieval
    • In The
    • Rocchio, J. J. (1971). Relevance feedback in information retrieval. In The SMART retrieval system (pp. 313-323).
    • (1971) SMART retrieval system , pp. 313-323
    • Rocchio, J.J.1
  • 41
    • 0028499630 scopus 로고
    • The effect of unlabeled samples in reducing the small sample size problem and mitigating the Hughes phenomenon
    • Shahshahani B., and Landgrebe D. The effect of unlabeled samples in reducing the small sample size problem and mitigating the Hughes phenomenon. IEEE Transactions on Geoscience and remote sensing 32 5 (1994) 1087-1095
    • (1994) IEEE Transactions on Geoscience and remote sensing , vol.32 , Issue.5 , pp. 1087-1095
    • Shahshahani, B.1    Landgrebe, D.2
  • 44
    • 17444418317 scopus 로고    scopus 로고
    • Learning to rank
    • Trotman A. Learning to rank. Information Retrieval 8 3 (2005) 359-381
    • (2005) Information Retrieval , vol.8 , Issue.3 , pp. 359-381
    • Trotman, A.1
  • 51
    • 33746834100 scopus 로고    scopus 로고
    • Enhancing relevance feedback in image retrieval using unlabeled data
    • Zhou Z.-H., Chen K.-J., and Dai H.-B. Enhancing relevance feedback in image retrieval using unlabeled data. ACM Transactions on Information Systems 24 2 (2006) 219-244
    • (2006) ACM Transactions on Information Systems , vol.24 , Issue.2 , pp. 219-244
    • Zhou, Z.-H.1    Chen, K.-J.2    Dai, H.-B.3
  • 53
    • 84880742718 scopus 로고    scopus 로고
    • Semi-supervised regression with co-training
    • international joint conference on artificial intelligence pp
    • Zhou, Z.-H., & Li, M. (2005a). Semi-supervised regression with co-training. In Proceedings of the 19th international joint conference on artificial intelligence (pp. 908-913).
    • (2005) Proceedings of the 19th , pp. 908-913
    • Zhou, Z.-H.1    Li, M.2
  • 54
    • 28244448186 scopus 로고    scopus 로고
    • Tri-training: Exploiting unlabeled data using three classifier
    • Zhou Z.-H., and Li M. Tri-training: Exploiting unlabeled data using three classifier. IEEE Transactions on Knowledge and Data Engineering 17 11 (2005) 1529-1541
    • (2005) IEEE Transactions on Knowledge and Data Engineering , vol.17 , Issue.11 , pp. 1529-1541
    • Zhou, Z.-H.1    Li, M.2
  • 55
    • 35348881683 scopus 로고    scopus 로고
    • Semi-supervised regression with co-training style algorithms
    • Zhou Z.-H., and Li M. Semi-supervised regression with co-training style algorithms. IEEE Transactions on Knowledge and Data Engineering 19 11 (2007) 1479-1493
    • (2007) IEEE Transactions on Knowledge and Data Engineering , vol.19 , Issue.11 , pp. 1479-1493
    • Zhou, Z.-H.1    Li, M.2
  • 57
    • 33745456231 scopus 로고    scopus 로고
    • Semi-supervised learning literature survey
    • Tech. Rep. 1530, Department of Computer Sciences, University of Wisconsin at Madison Madison, WI. Available from
    • Zhu, X. (2005). Semi-supervised learning literature survey. Tech. Rep. 1530, Department of Computer Sciences, University of Wisconsin at Madison Madison, WI. Available from: http://www.cs.wisc.edu/~jerryzhu/pub/sslsurvey.pdf.
    • (2005)
    • Zhu, X.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.