메뉴 건너뛰기




Volumn , Issue , 2009, Pages 85-89

PCA fused NN approach for drill wear prediction in drilling mild steel specimen

Author keywords

BPNN; Design of experiment; Flank wear; Neuron; PCA; Sensor integration; Signal analysis

Indexed keywords

ARTIFICIAL NEURAL NETWORK; BPNN; CHIP THICKNESS; COMPARATIVE ANALYSIS; CUTTING FORCES; DATA ACQUISITION SYSTEM; DRILL WEAR; FEED-RATES; FLANK WEAR; INPUT PARAMETER; MILD STEEL; PCA; PRINCIPAL COMPONENTS; PROCESS PARAMETERS; SENSOR INTEGRATION; SENSOR SIGNALS; SPINDLE SPEED;

EID: 70449130778     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/ICCSIT.2009.5234475     Document Type: Conference Paper
Times cited : (3)

References (17)
  • 2
    • 0036784050 scopus 로고    scopus 로고
    • Chungchoo, C. and Saini, D. (2002), A computer algorithm for flank and crater wear estimation in CNC turning operations, Int. J. of Mach. Tools & Manuf., 42, 1465-1477
    • Chungchoo, C. and Saini, D. (2002), A computer algorithm for flank and crater wear estimation in CNC turning operations, Int. J. of Mach. Tools & Manuf., 42, 1465-1477
  • 3
    • 0038787541 scopus 로고    scopus 로고
    • Haili, W., Hua, S., Ming, C. and Dejin, H. (2003), On-line tool breakage monitoring in turning, J. of Mater. Process. Technolo., 139, 237-242.
    • Haili, W., Hua, S., Ming, C. and Dejin, H. (2003), On-line tool breakage monitoring in turning, J. of Mater. Process. Technolo., 139, 237-242.
  • 4
    • 0024014613 scopus 로고    scopus 로고
    • Thangaraj, A and Wright, PK (1998), Computer assisted prediction of drill failure using in-process measurements of thrust force, J. of Eng. Ind., 110,192-200
    • Thangaraj, A and Wright, PK (1998), Computer assisted prediction of drill failure using in-process measurements of thrust force, J. of Eng. Ind., 110,192-200
  • 5
    • 0027641476 scopus 로고
    • Intelligent real-time predictive diagnostics for cutting tools and supervisory control of machining operations, ASME
    • Ramamurthi, K. and Hough, CL (1993), Intelligent real-time predictive diagnostics for cutting tools and supervisory control of machining operations, ASME, J. of Eng. for Ind., 115, 268-277
    • (1993) J. of Eng. for Ind , vol.115 , pp. 268-277
    • Ramamurthi, K.1    Hough, C.L.2
  • 6
    • 0032205936 scopus 로고
    • Intelligent detection of drill wear
    • Liu, T. I. and Chen, W.Y. (1988), Intelligent detection of drill wear, Mech. Syst. & Signal Process., 12(6), 863-873
    • (1988) Mech. Syst. & Signal Process , vol.12 , Issue.6 , pp. 863-873
    • Liu, T.I.1    Chen, W.Y.2
  • 7
    • 0037402139 scopus 로고    scopus 로고
    • Drilling wear detection and classification using vibration signals and artificial neural network
    • Abu-Mahfouz, I. (2003), Drilling wear detection and classification using vibration signals and artificial neural network, Int. J. Mach. tools & Manuf., 43, 707-720
    • (2003) Int. J. Mach. tools & Manuf , vol.43 , pp. 707-720
    • Abu-Mahfouz, I.1
  • 8
    • 0037804668 scopus 로고    scopus 로고
    • Wong, S.V. and Hamouda, A.M.S. (2003), Machinability data representation with artificial neural network, J. of Mater. Process. Technolo., 138, 538-544
    • Wong, S.V. and Hamouda, A.M.S. (2003), Machinability data representation with artificial neural network, J. of Mater. Process. Technolo., 138, 538-544
  • 9
    • 0028466477 scopus 로고    scopus 로고
    • Ko, T.J. and Cho. D.W. (1994), Cutting state monitoring in milling by a neural network, Int. J. of Mach. & Tools Manuf., 34(5), 659
    • Ko, T.J. and Cho. D.W. (1994), Cutting state monitoring in milling by a neural network, Int. J. of Mach. & Tools Manuf., 34(5), 659
  • 10
    • 0033727668 scopus 로고    scopus 로고
    • Li, X., Dong, S. and Venuvinod, P. K. (2000), Hybrid Learning for Tool Wear Monitoring, Int. J. of Adv. Manuf. Technolo., 16, 303-307
    • Li, X., Dong, S. and Venuvinod, P. K. (2000), Hybrid Learning for Tool Wear Monitoring, Int. J. of Adv. Manuf. Technolo., 16, 303-307
  • 11
    • 0025478253 scopus 로고
    • On-line detection of drill wear
    • Liu, T.I. and Wu, S.M. (1990), On-line detection of drill wear. J Eng. Ind., 112, 299-302
    • (1990) J Eng. Ind , vol.112 , pp. 299-302
    • Liu, T.I.1    Wu, S.M.2
  • 12
    • 0028482327 scopus 로고
    • Intelligent classification and measurement of drill wear
    • Liu, T.I. and Anantharaman, K.S. (1994), Intelligent classification and measurement of drill wear, ASME, J. Eng. Ind., 116, 392
    • (1994) ASME, J. Eng. Ind , vol.116 , pp. 392
    • Liu, T.I.1    Anantharaman, K.S.2
  • 13
    • 29144452580 scopus 로고    scopus 로고
    • Sanjay, C., Neema, M.L. and Chin, C.W. (2005), Modeling of tool wear in drilling by statistical analysis and artificial neural network, J. of Mater. Process. Technolo., 170, 494-500
    • Sanjay, C., Neema, M.L. and Chin, C.W. (2005), Modeling of tool wear in drilling by statistical analysis and artificial neural network, J. of Mater. Process. Technolo., 170, 494-500
  • 14
  • 17
    • 0025792756 scopus 로고
    • Optimal discernment plane for a small number of samples and design method of classifier on the plane
    • Hong, Z. Q. and Yang, J. Y. (1991), Optimal discernment plane for a small number of samples and design method of classifier on the plane, Pattern Recognition, 24 (4), 317-324
    • (1991) Pattern Recognition , vol.24 , Issue.4 , pp. 317-324
    • Hong, Z.Q.1    Yang, J.Y.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.