메뉴 건너뛰기




Volumn 43, Issue 9-10, 2009, Pages 852-861

An integrated study of surface roughness for modelling and optimization of cutting parameters during end milling operation

Author keywords

Artificial neural network; End milling; Genetic algorithm; Optimization; Regression analysis; Surface roughness

Indexed keywords

AISI 1040 STEEL; ANALYTICAL FORMULAS; ARTIFICIAL NEURAL NETWORK; BACKPROPAGATION LEARNING ALGORITHM; BEFORE AND AFTER; CUTTING OPERATIONS; CUTTING PARAMETERS; END MILLING; END-MILLING OPERATIONS; EXPERIMENTAL MEASUREMENTS; MACHINING TIME; MATERIAL SURFACE; MEASUREMENT EXPERIMENTS; MULTIPLE REGRESSION ANALYSIS; OPTIMIZATION PROCESS; SURFACE ROUGHNESS MODEL; WET CONDITIONS;

EID: 67651230570     PISSN: 02683768     EISSN: 14333015     Source Type: Journal    
DOI: 10.1007/s00170-008-1763-3     Document Type: Article
Times cited : (71)

References (25)
  • 1
    • 55349085676 scopus 로고
    • Fundamentals of machining and machine tools
    • New York
    • Boothroyd G, Knight WA (1989) Fundamentals of machining and machine tools. Marcel Dekker Inc., New York
    • (1989) Marcel Dekker Inc.
    • Boothroyd, G.1    Knight, W.A.2
  • 3
    • 0034008217 scopus 로고    scopus 로고
    • High speed machining of mold and dies for net shape manufacture
    • JP Urbanski P Koshy RC Dewes DK Aspinwall 2000 High speed machining of mold and dies for net shape manufacture Mater Des 2 395 402
    • (2000) Mater Des , vol.2 , pp. 395-402
    • Urbanski, J.P.1    Koshy, P.2    Dewes, R.C.3    Aspinwall, D.K.4
  • 4
    • 0037201022 scopus 로고    scopus 로고
    • High speed end milling of hardened AISI D2 tool steel (̃58 HRC)
    • P Koshy RC Dewes DK Aspinwall 2002 High speed end milling of hardened AISI D2 tool steel (~58 HRC) J Mater Process Technol 127 266 273
    • (2002) J Mater Process Technol , vol.127 , pp. 266-273
    • Koshy, P.1    Dewes, R.C.2    Aspinwall, D.K.3
  • 5
    • 0037277630 scopus 로고    scopus 로고
    • An in-process neural network-based surface roughness prediction (INN-SRP) system using a dynamometer in end milling operations
    • BP Huang JC Chen 2003 An in-process neural network-based surface roughness prediction (INN-SRP) system using a dynamometer in end milling operations Int J Adv Manuf Technol 21 339 347
    • (2003) Int J Adv Manuf Technol , vol.21 , pp. 339-347
    • Huang, B.P.1    Chen, J.C.2
  • 6
    • 0038003099 scopus 로고    scopus 로고
    • Surface roughness model for end milling: a semi-free cutting carbon casehardening steel (EN 32) in dry condition
    • A Mansour H Abdalla 2002 Surface roughness model for end milling: a semi-free cutting carbon casehardening steel (EN 32) in dry condition J Mater Process Technol 124 183 191
    • (2002) J Mater Process Technol , vol.124 , pp. 183-191
    • Mansour, A.1    Abdalla, H.2
  • 7
    • 27544452012 scopus 로고    scopus 로고
    • Selection of optimum tool geometry and cutting conditions using a surface roughness prediction model for end milling
    • NS Reddy PV Rao 2005 Selection of optimum tool geometry and cutting conditions using a surface roughness prediction model for end milling Int J Adv Manuf Technol 26 1202 1210
    • (2005) Int J Adv Manuf Technol , vol.26 , pp. 1202-1210
    • Reddy, N.S.1    Rao, P.V.2
  • 8
    • 38649122368 scopus 로고    scopus 로고
    • Artificial-neural-network-based surface roughness Pokayoke system for end-milling operations
    • BP Huang JC Chen 2008 Artificial-neural-network-based surface roughness Pokayoke system for end-milling operations Neurocomputing 71 544 549
    • (2008) Neurocomputing , vol.71 , pp. 544-549
    • Huang, B.P.1    Chen, J.C.2
  • 9
    • 0036815452 scopus 로고    scopus 로고
    • Prediction of surface roughness in CNC face milling using neural networks and Taguchi's design of experiments
    • PG Benardos GC Vosniakos 2002 Prediction of surface roughness in CNC face milling using neural networks and Taguchi's design of experiments Rob Comput Integr Manuf 18 343 354
    • (2002) Rob Comput Integr Manuf , vol.18 , pp. 343-354
    • Benardos, P.G.1    Vosniakos, G.C.2
  • 10
    • 84893919135 scopus 로고    scopus 로고
    • The experimental investigation of the effects of uncoated, PVD-and CVD-coated cemented carbide inserts and cutting parameters on surface roughness in CNC turning and its prediction using artificial neural networks
    • (in press)
    • Nalbant M, Gökkaya H, Toktaş I, Sur G (2008) The experimental investigation of the effects of uncoated, PVD-and CVD-coated cemented carbide inserts and cutting parameters on surface roughness in CNC turning and its prediction using artificial neural networks. Rob Comput Integr Manuf (in press)
    • (2008) Rob Comput Integr Manuf
    • Nalbant, M.1    Gökkaya, H.2    Toktaş, I.3    Sur, G.4
  • 11
    • 33645556229 scopus 로고    scopus 로고
    • Prediction of surface roughness of turned surfaces using neural networks
    • ZW Zhong LP Khoo ST Han 2006 Prediction of surface roughness of turned surfaces using neural networks Int J Adv Manuf Technol 28 688 693
    • (2006) Int J Adv Manuf Technol , vol.28 , pp. 688-693
    • Zhong, Z.W.1    Khoo, L.P.2    Han, S.T.3
  • 12
    • 0036568755 scopus 로고    scopus 로고
    • Selecting an artificial neural network for efficient modelling and accurate simulation of the milling process
    • JF Briceno HE Mounayri S Mukhopadhyay 2002 Selecting an artificial neural network for efficient modelling and accurate simulation of the milling process Int J Mach Tools Manuf 42 663 674
    • (2002) Int J Mach Tools Manuf , vol.42 , pp. 663-674
    • Briceno, J.F.1    Mounayri, H.E.2    Mukhopadhyay, S.3
  • 13
    • 34047132833 scopus 로고    scopus 로고
    • Modelling of surface finish and tool flank wear in turning of AISI D2 steel with ceramic wiper inserts
    • T Özel Y Karpat L Figueira JP Davim 2007 Modelling of surface finish and tool flank wear in turning of AISI D2 steel with ceramic wiper inserts J Mater Process Technol 189 192 198
    • (2007) J Mater Process Technol , vol.189 , pp. 192-198
    • T. Özel1    Karpat, Y.2    Figueira, L.3    Davim, J.P.4
  • 14
    • 34249737428 scopus 로고    scopus 로고
    • Surface roughness prediction using hybrid neural networks
    • CP Jesuthanam S Kumanan P Asokan 2007 Surface roughness prediction using hybrid neural networks Mach Sci Technol 11 271 286
    • (2007) Mach Sci Technol , vol.11 , pp. 271-286
    • Jesuthanam, C.P.1    Kumanan, S.2    Asokan, P.3
  • 15
    • 0035798152 scopus 로고    scopus 로고
    • Heat treatment technique optimization for 7175 aluminum alloy by an artificial neural network and a genetic algorithm
    • RG Song QZ Zhang 2001 Heat treatment technique optimization for 7175 aluminum alloy by an artificial neural network and a genetic algorithm J Mater Process Technol 117 84 88
    • (2001) J Mater Process Technol , vol.117 , pp. 84-88
    • Song, R.G.1    Zhang, Q.Z.2
  • 16
    • 33847678625 scopus 로고    scopus 로고
    • An integrated approach for optimum design of bridge decks using genetic algorithms and artificial neural networks
    • V Srinivas K Ramanjaneyulu 2007 An integrated approach for optimum design of bridge decks using genetic algorithms and artificial neural networks Adv Eng Software 38 475 487
    • (2007) Adv Eng Software , vol.38 , pp. 475-487
    • Srinivas, V.1    Ramanjaneyulu, K.2
  • 17
    • 0037323542 scopus 로고    scopus 로고
    • Optimization of cutting process by GA approach
    • F Cus J Balic 2003 Optimization of cutting process by GA approach Rob Comput Integr Manuf 19 113 121
    • (2003) Rob Comput Integr Manuf , vol.19 , pp. 113-121
    • Cus, F.1    Balic, J.2
  • 19
    • 67651205765 scopus 로고    scopus 로고
    • New tools from sandvik, tool catalogue
    • AB Sandvik Coromant Sweeden
    • Coromant S (2005) New tools from sandvik, tool catalogue. AB Sandvik Coromant, Sweeden
    • (2005) AB Sandvik Coromant
    • Coromant, S.1
  • 20
    • 0023331258 scopus 로고
    • An introduction to computing with neural nets
    • RP Lippman 1987 An introduction to computing with neural nets IEEE ASSP 4 4 22
    • (1987) IEEE ASSP , vol.4 , pp. 4-22
    • Lippman, R.P.1
  • 22
    • 67651225465 scopus 로고    scopus 로고
    • Matlab user manual version 7.1 R14
    • Math Works Incorporation. Natick, MA
    • Math Works Incorporation (2005) Matlab user manual version 7.1 R14. Math Works Inc., Natick, MA
    • (2005) Math Works Inc.
  • 23
    • 0004181391 scopus 로고    scopus 로고
    • University of Illinois, Champaign
    • David LC (1997) Genetic algorithms. University of Illinois, Champaign
    • (1997) Genetic Algorithms
    • David, L.C.1
  • 25
    • 27944452167 scopus 로고    scopus 로고
    • Optimum surface roughness in end milling Inconel 718 by coupling neural network and genetic algorithm
    • B Ozcelik H Oktem H Kurtaran 2005 Optimum surface roughness in end milling Inconel 718 by coupling neural network and genetic algorithm Int J Adv Manuf Technol 27 234 241
    • (2005) Int J Adv Manuf Technol , vol.27 , pp. 234-241
    • Ozcelik, B.1    Oktem, H.2    Kurtaran, H.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.