-
2
-
-
0034431455
-
-
in MRS Symposia Proceedings No. 612 (Materials Research Society, Pittsburgh
-
T. S. Kuan, C. K. Inoki, G. S. Oehrlein, K. Rosse, Y.-P. Zhao, G.-C. Wang, S. M. Rossnagel, and C. Cabral, in Materials, Technology, and Reliability for Advanced Interconnects and low-k Dielectrics, MRS Symposia Proceedings No. 612 (Materials Research Society, Pittsburgh, 2000), p. D7.1.1.
-
(2000)
Materials, Technology, and Reliability for Advanced Interconnects and Low-k Dielectrics
, pp. 711
-
-
Kuan, T.S.1
Inoki, C.K.2
Oehrlein, G.S.3
Rosse, K.4
Zhao, Y.-P.5
Wang, G.-C.6
Rossnagel, S.M.7
Cabral, C.8
-
3
-
-
33748695796
-
-
10.1063/1.2355435
-
J. J. Plombon, E. Andideh, V. M. Bubin, and J. Maiz, Appl. Phys. Lett. 89, 113124 (2006). 10.1063/1.2355435
-
(2006)
Appl. Phys. Lett.
, vol.89
, pp. 113124
-
-
Plombon, J.J.1
Andideh, E.2
Bubin, V.M.3
Maiz, J.4
-
6
-
-
0035281728
-
-
10.1016/S0040-6090(00)01818-6
-
H.-D. Liu, Y.-P. Zhao, G. Ramanath, S. P. Murarka, and G.-C. Wang, Thin Solid Films 384, 151 (2001). 10.1016/S0040-6090(00)01818-6
-
(2001)
Thin Solid Films
, vol.384
, pp. 151
-
-
Liu, H.-D.1
Zhao, Y.-P.2
Ramanath, G.3
Murarka, S.P.4
Wang, G.-C.5
-
7
-
-
0036470595
-
-
10.1063/1.1430530
-
E. V. Barnat, D. Nagakura, P.-I. Wang, and T.-M. Lu, J. Appl. Phys. 91, 1667 (2002). 10.1063/1.1430530
-
(2002)
J. Appl. Phys.
, vol.91
, pp. 1667
-
-
Barnat, E.V.1
Nagakura, D.2
Wang, P.-I.3
Lu, T.-M.4
-
10
-
-
31144433813
-
-
10.1116/1.1852466
-
K.-L. Ou, M.-S. Yu, R.-Q. Hsu, and M.-H. Lin, J. Vac. Sci. Technol. B 23, 229 (2005). 10.1116/1.1852466
-
(2005)
J. Vac. Sci. Technol. B
, vol.23
, pp. 229
-
-
Ou, K.-L.1
Yu, M.-S.2
Hsu, R.-Q.3
Lin, M.-H.4
-
11
-
-
36148957837
-
-
10.1007/s11664-007-0274-6
-
S. Tsukimoto, T. Onishi, K. Ito, M. Konno, T. Yaguchi, T. Kamino, and M. Murakami, J. Electron. Mater. 36, 1658 (2007). 10.1007/s11664-007-0274-6
-
(2007)
J. Electron. Mater.
, vol.36
, pp. 1658
-
-
Tsukimoto, S.1
Onishi, T.2
Ito, K.3
Konno, M.4
Yaguchi, T.5
Kamino, T.6
Murakami, M.7
-
12
-
-
0001761790
-
-
10.1063/1.349337
-
D.-Y. Shih, C.-A. Chang, J. Paraszczak, S. Nunes, and J. Cataldo, J. Appl. Phys. 70, 3052 (1991). 10.1063/1.349337
-
(1991)
J. Appl. Phys.
, vol.70
, pp. 3052
-
-
Shih, D.-Y.1
Chang, C.-A.2
Paraszczak, J.3
Nunes, S.4
Cataldo, J.5
-
14
-
-
84933207793
-
-
10.1080/00018735200101151
-
E. H. Sondheimer, Adv. Phys. 1, 1 (1952). 10.1080/00018735200101151
-
(1952)
Adv. Phys.
, vol.1
, pp. 1
-
-
Sondheimer, E.H.1
-
15
-
-
36849140975
-
-
10.1063/1.1703100
-
M. S. P. Lucas, J. Appl. Phys. 36, 1632 (1965). 10.1063/1.1703100
-
(1965)
J. Appl. Phys.
, vol.36
, pp. 1632
-
-
Lucas, M.S.P.1
-
17
-
-
4544364454
-
-
10.1143/JJAP.9.1326
-
Y. Namba, Jpn. J. Appl. Phys. 9, 1326 (1970). 10.1143/JJAP.9.1326
-
(1970)
Jpn. J. Appl. Phys.
, vol.9
, pp. 1326
-
-
Namba, Y.1
-
19
-
-
0001522514
-
-
10.1103/PhysRevB.51.10085
-
X.-G. Zhang and W. H. Butler, Phys. Rev. B 51, 10085 (1995). 10.1103/PhysRevB.51.10085
-
(1995)
Phys. Rev. B
, vol.51
, pp. 10085
-
-
Zhang, X.-G.1
Butler, W.H.2
-
20
-
-
30244555092
-
-
10.1103/PhysRevB.38.12298
-
N. Trivedi and N. W. Ashcroft, Phys. Rev. B 38, 12298 (1988). 10.1103/PhysRevB.38.12298
-
(1988)
Phys. Rev. B
, vol.38
, pp. 12298
-
-
Trivedi, N.1
Ashcroft, N.W.2
-
22
-
-
45149085514
-
-
10.1063/1.2937188
-
V. Timoshevskii, Y. Ke, H. Guo, and D. Gall, J. Appl. Phys. 103, 113705 (2008). 10.1063/1.2937188
-
(2008)
J. Appl. Phys.
, vol.103
, pp. 113705
-
-
Timoshevskii, V.1
Ke, Y.2
Guo, H.3
Gall, D.4
-
23
-
-
41849108815
-
-
10.1088/0953-8984/20/9/095209
-
Y. Zhou, S. Sreekala, P. M. Ajayan, and S. K. Nayak, J. Phys.: Condens. Matter 20, 095209 (2008). 10.1088/0953-8984/20/9/095209
-
(2008)
J. Phys.: Condens. Matter
, vol.20
, pp. 095209
-
-
Zhou, Y.1
Sreekala, S.2
Ajayan, P.M.3
Nayak, S.K.4
-
24
-
-
33646064148
-
-
10.1103/PhysRevB.73.144421
-
K. Carva, I. Turek, J. Kudrnovsky, and O. Bengone, Phys. Rev. B 73, 144421 (2006). 10.1103/PhysRevB.73.144421
-
(2006)
Phys. Rev. B
, vol.73
, pp. 144421
-
-
Carva, K.1
Turek, I.2
Kudrnovsky, J.3
Bengone, O.4
-
25
-
-
42549160944
-
-
10.1103/PhysRevLett.100.166805
-
Y. Ke, K. Xia, and H. Guo, Phys. Rev. Lett. 100, 166805 (2008). 10.1103/PhysRevLett.100.166805
-
(2008)
Phys. Rev. Lett.
, vol.100
, pp. 166805
-
-
Ke, Y.1
Xia, K.2
Guo, H.3
-
26
-
-
65149093187
-
-
10.1103/PhysRevB.79.155406
-
Y. Ke, F. Zahid, V. Timoshevskii, K. Xia, D. Gall, and H. Guo, Phys. Rev. B 79, 155406 (2009). 10.1103/PhysRevB.79.155406
-
(2009)
Phys. Rev. B
, vol.79
, pp. 155406
-
-
Ke, Y.1
Zahid, F.2
Timoshevskii, V.3
Xia, K.4
Gall, D.5
Guo, H.6
-
27
-
-
0003499960
-
-
Kluwer Academic, Boston
-
I. Turek, V. Drchal, J. Kudrnovsky, M. Sob, and P. Weinberger, Electronic Structure of Disordered Alloys, Surfaces and Interfaces (Kluwer Academic, Boston, 1997).
-
(1997)
Electronic Structure of Disordered Alloys, Surfaces and Interfaces
-
-
Turek, I.1
Drchal, V.2
Kudrnovsky, J.3
Sob, M.4
Weinberger, P.5
-
28
-
-
4243720937
-
-
10.1103/PhysRevB.63.245407;
-
J. Taylor, H. Guo, and J. Wang, Phys. Rev. B 63, 245407 (2001) 10.1103/PhysRevB.63.245407
-
(2001)
Phys. Rev. B
, vol.63
, pp. 245407
-
-
Taylor, J.1
Guo, H.2
Wang, J.3
-
30
-
-
36049054756
-
-
10.1103/PhysRev.184.614
-
B. Velický, Phys. Rev. 184, 614 (1969). 10.1103/PhysRev.184.614
-
(1969)
Phys. Rev.
, vol.184
, pp. 614
-
-
Velický, B.1
-
31
-
-
77954832354
-
-
See supplementary material at http://link.aps.org/supplemental/10.1103/ PhysRevLett.100.166805 for further information on the theoretical method employed in this study.
-
-
-
-
32
-
-
77954824490
-
-
For the DOS calculations with VASP, we used a supercell consists of a seven-layer (4×4 ) Cu (110 ) periodic atomic structure with one impurity metal atom replacing a Cu atom at the surface layer. The vacuum region in the z direction of the supercell is set to be around 15Å. The four top layers are allowed to relax while the three bottom layers are fixed at the bulk position with a bulk Cu lattice constant 3.61Å, consistent with our LMTO calculations. An energy cutoff of 275 eV is used in the plane-wave basis. The Monkhorst-Pack scheme is adopted for integration of Brillouin zone with a k mesh of 8×8×1. Note that, the VASP calculations are only possible for periodic structures whereas our LMTO calculations are performed treating the Cu film as a two-probe device of specific length.
-
For the DOS calculations with VASP, we used a supercell consists of a seven-layer (4 × 4) Cu (110) periodic atomic structure with one impurity metal atom replacing a Cu atom at the surface layer. The vacuum region in the z direction of the supercell is set to be around 15 Å. The four top layers are allowed to relax while the three bottom layers are fixed at the bulk position with a bulk Cu lattice constant 3.61 Å, consistent with our LMTO calculations. An energy cutoff of 275 eV is used in the plane-wave basis. The Monkhorst-Pack scheme is adopted for integration of Brillouin zone with a k mesh of 8 × 8 × 1. Note that, the VASP calculations are only possible for periodic structures whereas our LMTO calculations are performed treating the Cu film as a two-probe device of specific length.
-
-
-
-
33
-
-
12844286241
-
-
10.1103/PhysRevB.47.558;
-
G. Kresse and J. Hafner, Phys. Rev. B 47, 558 (1993) 10.1103/PhysRevB.47. 558
-
(1993)
Phys. Rev. B
, vol.47
, pp. 558
-
-
Kresse, G.1
Hafner, J.2
|