메뉴 건너뛰기




Volumn 43, Issue 8, 2010, Pages 2763-2772

Ensemble gene selection for cancer classification

Author keywords

Cancer classification; Ensemble learning; Gene selection; Microarray data; Mutual information

Indexed keywords

CANCER CLASSIFICATION; ENSEMBLE LEARNING; GENE SELECTION; MICROARRAY DATA; MUTUAL INFORMATIONS;

EID: 77951255156     PISSN: 00313203     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.patcog.2010.02.008     Document Type: Article
Times cited : (84)

References (57)
  • 1
    • 0037623370 scopus 로고    scopus 로고
    • Cancer classification using gene expression data
    • Lu Y., and Han J. Cancer classification using gene expression data. Information Systems 28 (2003) 243-268
    • (2003) Information Systems , vol.28 , pp. 243-268
    • Lu, Y.1    Han, J.2
  • 4
    • 33846978784 scopus 로고    scopus 로고
    • Critical review of published microarray studies for cancer outcome and guidelines on statistical analysis and reporting
    • Dupuy A., and Simon R.M. Critical review of published microarray studies for cancer outcome and guidelines on statistical analysis and reporting. Journal of the National Cancer Institute 9 2 (2007) 147-157
    • (2007) Journal of the National Cancer Institute , vol.9 , Issue.2 , pp. 147-157
    • Dupuy, A.1    Simon, R.M.2
  • 6
    • 43149116763 scopus 로고    scopus 로고
    • Gene-set approach for expression pattern analysis
    • Nam D., and Kim S.-Y. Gene-set approach for expression pattern analysis. Briefings in Bioinformatics 9 3 (2008) 189-197
    • (2008) Briefings in Bioinformatics , vol.9 , Issue.3 , pp. 189-197
    • Nam, D.1    Kim, S.-Y.2
  • 7
    • 35748932917 scopus 로고    scopus 로고
    • A review of feature selection techniques in bioinformatics
    • Saeys Y., Inza I., and Larranaga P. A review of feature selection techniques in bioinformatics. Bioinformatics 23 19 (2007) 2507-2517
    • (2007) Bioinformatics , vol.23 , Issue.19 , pp. 2507-2517
    • Saeys, Y.1    Inza, I.2    Larranaga, P.3
  • 8
    • 42049102625 scopus 로고    scopus 로고
    • Approaches to dimensionality reduction in proteomic biomarker studies
    • Hilario M., and Kalousis A. Approaches to dimensionality reduction in proteomic biomarker studies. Briefings in Bioinformatics 9 2 (2008) 102-118
    • (2008) Briefings in Bioinformatics , vol.9 , Issue.2 , pp. 102-118
    • Hilario, M.1    Kalousis, A.2
  • 9
    • 50549092368 scopus 로고    scopus 로고
    • Feature selection, mutual information, and the classification of high-dimensional patterns
    • Bonev B., Escolano F., and Cazorla M. Feature selection, mutual information, and the classification of high-dimensional patterns. Pattern Analysis and Applications 11 (2008) 309-319
    • (2008) Pattern Analysis and Applications , vol.11 , pp. 309-319
    • Bonev, B.1    Escolano, F.2    Cazorla, M.3
  • 10
    • 48549094895 scopus 로고    scopus 로고
    • A comprehensive comparison of random forests and support vector machines for microarray-based cancer classification
    • Statnikov A., Wang L., and Aliferis C.F. A comprehensive comparison of random forests and support vector machines for microarray-based cancer classification. BMC Bioinformatics 9 (2008) 319
    • (2008) BMC Bioinformatics , vol.9 , pp. 319
    • Statnikov, A.1    Wang, L.2    Aliferis, C.F.3
  • 12
    • 36349010718 scopus 로고    scopus 로고
    • Gene selection for classification of microarray data based on the Bayes error
    • Zhang J.-G., and Deng H.-W. Gene selection for classification of microarray data based on the Bayes error. BMC Bioinformatics 8 (2007) 370-378
    • (2007) BMC Bioinformatics , vol.8 , pp. 370-378
    • Zhang, J.-G.1    Deng, H.-W.2
  • 13
    • 34249855141 scopus 로고    scopus 로고
    • MSVM-RFE: extensions of SVM-RFE for multiclass gene selection on DNA microarray data
    • Zhou X., and Tuck D.P. MSVM-RFE: extensions of SVM-RFE for multiclass gene selection on DNA microarray data. Bioinformatics 23 9 (2007) 1106-1114
    • (2007) Bioinformatics , vol.23 , Issue.9 , pp. 1106-1114
    • Zhou, X.1    Tuck, D.P.2
  • 14
    • 33750366183 scopus 로고    scopus 로고
    • Ensemble classifiers based on correlation analysis for DNA microarray classification
    • Kim K.-J., and Cho S.-B. Ensemble classifiers based on correlation analysis for DNA microarray classification. Neurocomputing 70 (2006) 187-199
    • (2006) Neurocomputing , vol.70 , pp. 187-199
    • Kim, K.-J.1    Cho, S.-B.2
  • 16
    • 34247154511 scopus 로고    scopus 로고
    • Cancer classification using ensemble of neural networks with multiple significant gene subsets
    • Cho S.-B., and Won H.-H. Cancer classification using ensemble of neural networks with multiple significant gene subsets. Applied Intelligence 26 (2007) 243-250
    • (2007) Applied Intelligence , vol.26 , pp. 243-250
    • Cho, S.-B.1    Won, H.-H.2
  • 17
    • 30344458742 scopus 로고    scopus 로고
    • The classification of cancer based on DNA microarray data that uses diverse ensemble genetic programming
    • Hong J.-H., and Cho S.-B. The classification of cancer based on DNA microarray data that uses diverse ensemble genetic programming. Artificial Intelligence in Medicine 36 (2006) 43-58
    • (2006) Artificial Intelligence in Medicine , vol.36 , pp. 43-58
    • Hong, J.-H.1    Cho, S.-B.2
  • 18
    • 37649001659 scopus 로고    scopus 로고
    • An integrated algorithm for gene selection and classification applied to microarray data of ovarian cancer
    • Lee Z.-J. An integrated algorithm for gene selection and classification applied to microarray data of ovarian cancer. Artificial Intelligence in Medicine 42 (2008) 81-93
    • (2008) Artificial Intelligence in Medicine , vol.42 , pp. 81-93
    • Lee, Z.-J.1
  • 19
    • 35548987823 scopus 로고    scopus 로고
    • Ensemble methods for classification of patients for personalized medicine with high-dimensional data
    • Moon H., Ahn H., Kodell R.L., Baek S., Lin C.-J., and Chen J.J. Ensemble methods for classification of patients for personalized medicine with high-dimensional data. Artificial Intelligence in Medicine 41 (2007) 197-207
    • (2007) Artificial Intelligence in Medicine , vol.41 , pp. 197-207
    • Moon, H.1    Ahn, H.2    Kodell, R.L.3    Baek, S.4    Lin, C.-J.5    Chen, J.J.6
  • 21
    • 62349118015 scopus 로고    scopus 로고
    • Feature selection with dynamic mutual information
    • Liu H., Sun J., Liu L., and Zhang H. Feature selection with dynamic mutual information. Pattern Recognition 42 (2009) 1330-1339
    • (2009) Pattern Recognition , vol.42 , pp. 1330-1339
    • Liu, H.1    Sun, J.2    Liu, L.3    Zhang, H.4
  • 22
    • 34047125226 scopus 로고    scopus 로고
    • Information-theoretic methods
    • Guyon I., Gunn S., Nikravesh M., and Zadeh L.A. (Eds), Springer, Berlin
    • Torkkola K. Information-theoretic methods. In: Guyon I., Gunn S., Nikravesh M., and Zadeh L.A. (Eds). Feature Extraction: Foundations and Applications (2006), Springer, Berlin 167-186
    • (2006) Feature Extraction: Foundations and Applications , pp. 167-186
    • Torkkola, K.1
  • 24
    • 17044405923 scopus 로고    scopus 로고
    • Toward integrating feature selection algorithms for classification and clustering
    • Liu H., and Yu L. Toward integrating feature selection algorithms for classification and clustering. IEEE Transactions on Knowledge and Data Engineering 17 4 (2005) 491-502
    • (2005) IEEE Transactions on Knowledge and Data Engineering , vol.17 , Issue.4 , pp. 491-502
    • Liu, H.1    Yu, L.2
  • 25
    • 17644384367 scopus 로고    scopus 로고
    • Minimum redundancy feature selection from microarray gene expression data
    • Ding C., and Peng H. Minimum redundancy feature selection from microarray gene expression data. Journal of Bioinformatics and Computational Biology 3 2 (2005) 185-205
    • (2005) Journal of Bioinformatics and Computational Biology , vol.3 , Issue.2 , pp. 185-205
    • Ding, C.1    Peng, H.2
  • 26
    • 34547986205 scopus 로고    scopus 로고
    • Effective gene selection method with small sample sets using gradient-based and point injection techniques
    • Huang D., and Chow T.W.S. Effective gene selection method with small sample sets using gradient-based and point injection techniques. IEEE/ACM Transactions on Computational Biology and Bioinformatics 4 3 (2007) 467-475
    • (2007) IEEE/ACM Transactions on Computational Biology and Bioinformatics , vol.4 , Issue.3 , pp. 467-475
    • Huang, D.1    Chow, T.W.S.2
  • 27
    • 65349114392 scopus 로고    scopus 로고
    • An evolutionary algorithm approach to optimal ensemble classifiers for DNA microarray data analysis
    • Kim K.-J., and Cho S.-B. An evolutionary algorithm approach to optimal ensemble classifiers for DNA microarray data analysis. IEEE Transactions on Evolutionary Computation 12 3 (2008) 377-388
    • (2008) IEEE Transactions on Evolutionary Computation , vol.12 , Issue.3 , pp. 377-388
    • Kim, K.-J.1    Cho, S.-B.2
  • 28
    • 49549122220 scopus 로고    scopus 로고
    • Applying data mining techniques for cancer classification on gene expression data
    • Yeh J.-Y. Applying data mining techniques for cancer classification on gene expression data. Cybernetics and Systems: An International Journal 39 (2008) 583-602
    • (2008) Cybernetics and Systems: An International Journal , vol.39 , pp. 583-602
    • Yeh, J.-Y.1
  • 29
    • 34250896121 scopus 로고    scopus 로고
    • Markov blanket-embedded genetic algorithm for gene selection
    • Zhu Z., Ong Y.-S., and Dash M. Markov blanket-embedded genetic algorithm for gene selection. Pattern Recognition 40 (2007) 3236-3248
    • (2007) Pattern Recognition , vol.40 , pp. 3236-3248
    • Zhu, Z.1    Ong, Y.-S.2    Dash, M.3
  • 32
    • 25144492516 scopus 로고    scopus 로고
    • Efficient feature selection via analysis of relevance and redundancy
    • Yu L., and Liu H. Efficient feature selection via analysis of relevance and redundancy. Journal of Machine Learning Research 5 (2004) 1205-1224
    • (2004) Journal of Machine Learning Research , vol.5 , pp. 1205-1224
    • Yu, L.1    Liu, H.2
  • 33
    • 85130909127 scopus 로고    scopus 로고
    • Feature selection for genomic data analysis
    • Liu H., and Motoda H. (Eds), Chapman and Hall/CRC Press
    • Yu L. Feature selection for genomic data analysis. In: Liu H., and Motoda H. (Eds). Computational Methods of Feature Selection (2008), Chapman and Hall/CRC Press 337-353
    • (2008) Computational Methods of Feature Selection , pp. 337-353
    • Yu, L.1
  • 34
    • 33645690579 scopus 로고    scopus 로고
    • Fast binary feature selection with conditional mutual information
    • Fleuret F. Fast binary feature selection with conditional mutual information. Journal of Machine Learning Research 5 (2004) 1531-1555
    • (2004) Journal of Machine Learning Research , vol.5 , pp. 1531-1555
    • Fleuret, F.1
  • 35
    • 74749091012 scopus 로고    scopus 로고
    • D. Levi, S. Ullman, Learning to classify by ongoing feature selection, Image and Vision Computing 28 (4) (2010) 715-723
    • D. Levi, S. Ullman, Learning to classify by ongoing feature selection, Image and Vision Computing 28 (4) (2010) 715-723
  • 38
    • 0034324043 scopus 로고    scopus 로고
    • A formalism for relevance and its application in feature subset selection
    • Bell D.A., and Wang H. A formalism for relevance and its application in feature subset selection. Machine Learning 41 (2000) 175-195
    • (2000) Machine Learning , vol.41 , pp. 175-195
    • Bell, D.A.1    Wang, H.2
  • 39
    • 33748416594 scopus 로고    scopus 로고
    • Incremental wrapper-based gene selection from microarray data for cancer classification
    • Ruiz R., Riquelme J.C., and Aguilar-Ruiz J.S. Incremental wrapper-based gene selection from microarray data for cancer classification. Pattern Recognition 39 (2006) 2383-2392
    • (2006) Pattern Recognition , vol.39 , pp. 2383-2392
    • Ruiz, R.1    Riquelme, J.C.2    Aguilar-Ruiz, J.S.3
  • 40
    • 58249093836 scopus 로고    scopus 로고
    • A feature selection technique for generation of classification committees and its application to categorization of laryngeal images
    • M. Bacauskiene, A. Verikas, A. Gelzinis, D. Valincius, A feature selection technique for generation of classification committees and its application to categorization of laryngeal images, Pattern Recognition 42 (5) (2009) 645-654
    • (2009) Pattern Recognition , vol.42 , Issue.5 , pp. 645-654
    • Bacauskiene, M.1    Verikas, A.2    Gelzinis, A.3    Valincius, D.4
  • 42
    • 2542596956 scopus 로고    scopus 로고
    • Gene mining: a novel and powerful ensemble decision approach to hunting for disease genes using microarray expression profiling
    • Li X., Rao S., Wang Y., and Gong B. Gene mining: a novel and powerful ensemble decision approach to hunting for disease genes using microarray expression profiling. Nucleic Acids Research 32 9 (2004) 2685-2694
    • (2004) Nucleic Acids Research , vol.32 , Issue.9 , pp. 2685-2694
    • Li, X.1    Rao, S.2    Wang, Y.3    Gong, B.4
  • 43
    • 48949116216 scopus 로고    scopus 로고
    • A general wrapper approach to selection of class-dependent features
    • Wang L., Zhou N., and Chu F. A general wrapper approach to selection of class-dependent features. IEEE Transactions on Neural Networks 19 7 (2008) 1267-1278
    • (2008) IEEE Transactions on Neural Networks , vol.19 , Issue.7 , pp. 1267-1278
    • Wang, L.1    Zhou, N.2    Chu, F.3
  • 44
    • 30644464444 scopus 로고    scopus 로고
    • Gene selection and classification of microarray data using random forest
    • Díaz-Uriarte R., and Alvarez de Andrés S. Gene selection and classification of microarray data using random forest. BMC Bioinformatics 7 (2006) 3
    • (2006) BMC Bioinformatics , vol.7 , pp. 3
    • Díaz-Uriarte, R.1    Alvarez de Andrés, S.2
  • 46
    • 61449159874 scopus 로고    scopus 로고
    • Dataset complexity in gene expression based cancer classification using ensembles of k-nearest neighbors
    • O. Okun, H. Priisalu, Dataset complexity in gene expression based cancer classification using ensembles of k-nearest neighbors, Artificial Intelligence in Medicine 45 (2-3) (2009) 151-162
    • (2009) Artificial Intelligence in Medicine , vol.45 , Issue.2-3 , pp. 151-162
    • Okun, O.1    Priisalu, H.2
  • 49
    • 33244485264 scopus 로고    scopus 로고
    • Non-parametric classifier-independent feature selection
    • Abe N., and Kudo M. Non-parametric classifier-independent feature selection. Pattern Recognition 39 (2006) 737-746
    • (2006) Pattern Recognition , vol.39 , pp. 737-746
    • Abe, N.1    Kudo, M.2
  • 50
    • 35348915328 scopus 로고    scopus 로고
    • Classifier ensembles: select real-world applications
    • Oza N.C., and Tumer K. Classifier ensembles: select real-world applications. Information Fusion 9 (2008) 4-20
    • (2008) Information Fusion , vol.9 , pp. 4-20
    • Oza, N.C.1    Tumer, K.2
  • 51
    • 10444238133 scopus 로고    scopus 로고
    • Diversity in search strategies for ensemble feature selection
    • Tsymbal A., Pechenizkiy M., and Cunningham P. Diversity in search strategies for ensemble feature selection. Information Fusion 6 (2005) 83-98
    • (2005) Information Fusion , vol.6 , pp. 83-98
    • Tsymbal, A.1    Pechenizkiy, M.2    Cunningham, P.3
  • 56
    • 33746677949 scopus 로고    scopus 로고
    • A stable gene selection in microarray data analysis
    • Yang K., Cai Z., Li J., and Lin G. A stable gene selection in microarray data analysis. BMC Bioinformatics 7 (2006) 228
    • (2006) BMC Bioinformatics , vol.7 , pp. 228
    • Yang, K.1    Cai, Z.2    Li, J.3    Lin, G.4
  • 57
    • 36048978462 scopus 로고    scopus 로고
    • Selecting differentially expressed genes using minimum probability of classification error
    • Mahata P., and Mahata K. Selecting differentially expressed genes using minimum probability of classification error. Journal of Biomedical Informatics 40 (2007) 775-786
    • (2007) Journal of Biomedical Informatics , vol.40 , pp. 775-786
    • Mahata, P.1    Mahata, K.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.