-
3
-
-
0028496468
-
Learning boolean concepts in the presence of many irrelevant features
-
Almuallim, H. & Dietterich, T. G. (1994). Learning boolean concepts in the presence of many irrelevant features. Artificial Intelligence, 69, 279-305.
-
(1994)
Artificial Intelligence
, vol.69
, pp. 279-305
-
-
Almuallim, H.1
Dietterich, T.G.2
-
4
-
-
0028195682
-
What size network is good for generalization of a specific task of interest?
-
Amirikian, B. & Nishimura, H. (1994). What size network is good for generalization of a specific task of interest? Neural Networks, 7(2), 321-329.
-
(1994)
Neural Networks
, vol.7
, Issue.2
, pp. 321-329
-
-
Amirikian, B.1
Nishimura, H.2
-
5
-
-
84974698517
-
Relevant examples & relevant features: Thoughts from computational learning theory
-
AAAI Press
-
Blum, A. (1994). Relevant examples & relevant features: thoughts from computational learning theory. In Relevance: Proc. 1994 AAAI Fall Symposium (pp. 14-18). AAAI Press.
-
(1994)
Relevance: Proc. 1994 AAAI Fall Symposium
, pp. 14-18
-
-
Blum, A.1
-
6
-
-
0023646365
-
Occam's Razor
-
Blumer, A., Ehrenfeucht, A., Haussler, D., & Warmuth, M. K. (1987). Occam's Razor. Information Processing Letters, 24, 377-380.
-
(1987)
Information Processing Letters
, vol.24
, pp. 377-380
-
-
Blumer, A.1
Ehrenfeucht, A.2
Haussler, D.3
Warmuth, M.K.4
-
13
-
-
0141809685
-
On the logic of relevance
-
Gärdenfors, P. (1978). On the logic of relevance. Synthese, 37, 351-367.
-
(1978)
Synthese
, vol.37
, pp. 351-367
-
-
Gärdenfors, P.1
-
14
-
-
0024732990
-
Models of incremental concept formation
-
Gennari, J. H., Langley, P., & Fisher, D. (1989). Models of incremental concept formation. Artificial Intelligence, 40, 11-61.
-
(1989)
Artificial Intelligence
, vol.40
, pp. 11-61
-
-
Gennari, J.H.1
Langley, P.2
Fisher, D.3
-
16
-
-
85099325734
-
Irrelevant features and the subset selection problem
-
New Brunswick, NJ: Morgan Kaufmann
-
John, G. H., Kohavi, R., & Pfleger, K. (1994). Irrelevant features and the subset selection problem. In Proceedings of the 11th international conference on machine learning (pp. 121-129). New Brunswick, NJ: Morgan Kaufmann.
-
(1994)
Proceedings of the 11th International Conference on Machine Learning
, pp. 121-129
-
-
John, G.H.1
Kohavi, R.2
Pfleger, K.3
-
18
-
-
0027002164
-
The feature selection problem: Traditional methods and a new algorithm
-
Kira, K. & Rendell, L. A. (1992). The feature selection problem: traditional methods and a new algorithm. In AAAI-92 (pp. 129-134).
-
(1992)
AAAI-92
, pp. 129-134
-
-
Kira, K.1
Rendell, L.A.2
-
19
-
-
85021112585
-
Feature subset selection using the wrapper method: Overfitting and dynamic search space topology
-
U. M. Fayyad & R. Uthurusamy (Eds.)
-
Kohavi, R. & Sommerfield, D. (1995). Feature subset selection using the wrapper method: Overfitting and dynamic search space topology. In U. M. Fayyad & R. Uthurusamy (Eds.), Proceedings of KDD'95 (pp. 192-197).
-
(1995)
Proceedings of KDD'95
, pp. 192-197
-
-
Kohavi, R.1
Sommerfield, D.2
-
20
-
-
85169587869
-
Feature Subset Selection as Search with Probabilistic Estimates
-
R. Greiner, & D. Subramanian (Eds.). The AAAI Press
-
Kohavi, R. (1994). Feature Subset Selection as Search with Probabilistic Estimates. In R. Greiner, & D. Subramanian (Eds.). Relevance: Proc 1994 AAAI Fall Symposium (pp. 122-126). The AAAI Press.
-
(1994)
Relevance: Proc 1994 AAAI Fall Symposium
, pp. 122-126
-
-
Kohavi, R.1
-
21
-
-
0030735972
-
Overcoming the myopia of inductive learning algorithms with relieff
-
Kononenko, I., Simec, E., & Robnik-Sikonja, M. (1997). Overcoming the myopia of inductive learning algorithms with relieff. Applied Intelligence, 7, 39-55.
-
(1997)
Applied Intelligence
, vol.7
, pp. 39-55
-
-
Kononenko, I.1
Simec, E.2
Robnik-Sikonja, M.3
-
23
-
-
0002395288
-
A Logical account of relevance
-
Lakemeyer, G. (1995). A Logical account of relevance. In Proc. of IJCAI-95 (pp. 853-859).
-
(1995)
Proc. of IJCAI-95
, pp. 853-859
-
-
Lakemeyer, G.1
-
24
-
-
34250091945
-
Learning quickly when irrelevant attributes abound: A new linear-threshold algorithm.
-
Littlestone, N. Learning quickly when irrelevant attributes abound: A new linear-threshold algorithm. (1988). Machine learning, 2, 285-318.
-
(1988)
Machine Learning
, vol.2
, pp. 285-318
-
-
Littlestone, N.1
-
26
-
-
0031189159
-
Feature selection via discretization of numeric attributes
-
Liu, H. & Setiono, R. (1997). Feature selection via discretization of numeric attributes. IEEE Trans on Knowledge and Data Engineering, 9(4), 642-645.
-
(1997)
IEEE Trans on Knowledge and Data Engineering
, vol.9
, Issue.4
, pp. 642-645
-
-
Liu, H.1
Setiono, R.2
-
29
-
-
0024627518
-
Inferring decision trees using the minimum description length principle
-
Quinlan, J. & Rivest, R. (1989). Inferring decision trees using the minimum description length principle. Information and Computation, 80, 227-248.
-
(1989)
Information and Computation
, vol.80
, pp. 227-248
-
-
Quinlan, J.1
Rivest, R.2
-
30
-
-
0000318553
-
Stochastic complexity and modeling
-
Rissanen, J. (1986). Stochastic complexity and modeling. Ann. Statist., 14, 1080-1100.
-
(1986)
Ann. Statist.
, vol.14
, pp. 1080-1100
-
-
Rissanen, J.1
-
31
-
-
85152626023
-
Efficiently inducing determinations: A complete and systematic search algorithm that uses optimal pruning
-
Schlimmer, J. C. (1993). Efficiently inducing determinations: A complete and systematic search algorithm that uses optimal pruning. In ML93, pp. 284-290.
-
(1993)
ML93
, pp. 284-290
-
-
Schlimmer, J.C.1
-
33
-
-
0018877134
-
Axiomatic derivation of the principle of maximum entropy and the principle of minimum cross-entropy
-
Shore, J. E. & Johnson, R. W. (1980). Axiomatic derivation of the principle of maximum entropy and the principle of minimum cross-entropy. IEEE Trans. Information Theory, 26, 26-37.
-
(1980)
IEEE Trans. Information Theory
, vol.26
, pp. 26-37
-
-
Shore, J.E.1
Johnson, R.W.2
-
34
-
-
0012657799
-
Prototype and feature selection by sampling and random mutation hill-climbing algorithms
-
New Brunswick, N.J.: Morgan Kaufmann
-
Skalak, D. B. (1994). Prototype and feature selection by sampling and random mutation hill-climbing algorithms. In Proceedings of the 11th International Conference on Machine Learning (pp. 293-301). New Brunswick, N.J.: Morgan Kaufmann.
-
(1994)
Proceedings of the 11th International Conference on Machine Learning
, pp. 293-301
-
-
Skalak, D.B.1
-
38
-
-
0342984513
-
-
Ph.D. Thesis, Faculty of Informatics, University of Ulster, N. Ireland, UK.
-
Wang, H. (1996). Towards a unified framework of relevance. Ph.D. Thesis, Faculty of Informatics, University of Ulster, N. Ireland, UK. http://www.infj.ulst.ac.uk/~cbcj23/thesis.ps.
-
(1996)
Towards a Unified Framework of Relevance
-
-
Wang, H.1
-
39
-
-
0011867814
-
The relationship between Occam's Razor and convergent guessing
-
Wolpert, D. H. (1990). The relationship between Occam's Razor and convergent guessing. Complex Systems, 4, 319-368.
-
(1990)
Complex Systems
, vol.4
, pp. 319-368
-
-
Wolpert, D.H.1
|