메뉴 건너뛰기




Volumn 41, Issue 2, 2000, Pages 175-195

Formalism for relevance and its application in feature subset selection

Author keywords

[No Author keywords available]

Indexed keywords

ALGORITHMS; DATA MINING; KNOWLEDGE ACQUISITION; SET THEORY;

EID: 0034324043     PISSN: 08856125     EISSN: None     Source Type: Journal    
DOI: 10.1023/A:1007612503587     Document Type: Article
Times cited : (166)

References (39)
  • 3
    • 0028496468 scopus 로고
    • Learning boolean concepts in the presence of many irrelevant features
    • Almuallim, H. & Dietterich, T. G. (1994). Learning boolean concepts in the presence of many irrelevant features. Artificial Intelligence, 69, 279-305.
    • (1994) Artificial Intelligence , vol.69 , pp. 279-305
    • Almuallim, H.1    Dietterich, T.G.2
  • 4
    • 0028195682 scopus 로고
    • What size network is good for generalization of a specific task of interest?
    • Amirikian, B. & Nishimura, H. (1994). What size network is good for generalization of a specific task of interest? Neural Networks, 7(2), 321-329.
    • (1994) Neural Networks , vol.7 , Issue.2 , pp. 321-329
    • Amirikian, B.1    Nishimura, H.2
  • 5
    • 84974698517 scopus 로고
    • Relevant examples & relevant features: Thoughts from computational learning theory
    • AAAI Press
    • Blum, A. (1994). Relevant examples & relevant features: thoughts from computational learning theory. In Relevance: Proc. 1994 AAAI Fall Symposium (pp. 14-18). AAAI Press.
    • (1994) Relevance: Proc. 1994 AAAI Fall Symposium , pp. 14-18
    • Blum, A.1
  • 13
    • 0141809685 scopus 로고
    • On the logic of relevance
    • Gärdenfors, P. (1978). On the logic of relevance. Synthese, 37, 351-367.
    • (1978) Synthese , vol.37 , pp. 351-367
    • Gärdenfors, P.1
  • 18
    • 0027002164 scopus 로고
    • The feature selection problem: Traditional methods and a new algorithm
    • Kira, K. & Rendell, L. A. (1992). The feature selection problem: traditional methods and a new algorithm. In AAAI-92 (pp. 129-134).
    • (1992) AAAI-92 , pp. 129-134
    • Kira, K.1    Rendell, L.A.2
  • 19
    • 85021112585 scopus 로고
    • Feature subset selection using the wrapper method: Overfitting and dynamic search space topology
    • U. M. Fayyad & R. Uthurusamy (Eds.)
    • Kohavi, R. & Sommerfield, D. (1995). Feature subset selection using the wrapper method: Overfitting and dynamic search space topology. In U. M. Fayyad & R. Uthurusamy (Eds.), Proceedings of KDD'95 (pp. 192-197).
    • (1995) Proceedings of KDD'95 , pp. 192-197
    • Kohavi, R.1    Sommerfield, D.2
  • 20
    • 85169587869 scopus 로고
    • Feature Subset Selection as Search with Probabilistic Estimates
    • R. Greiner, & D. Subramanian (Eds.). The AAAI Press
    • Kohavi, R. (1994). Feature Subset Selection as Search with Probabilistic Estimates. In R. Greiner, & D. Subramanian (Eds.). Relevance: Proc 1994 AAAI Fall Symposium (pp. 122-126). The AAAI Press.
    • (1994) Relevance: Proc 1994 AAAI Fall Symposium , pp. 122-126
    • Kohavi, R.1
  • 21
    • 0030735972 scopus 로고    scopus 로고
    • Overcoming the myopia of inductive learning algorithms with relieff
    • Kononenko, I., Simec, E., & Robnik-Sikonja, M. (1997). Overcoming the myopia of inductive learning algorithms with relieff. Applied Intelligence, 7, 39-55.
    • (1997) Applied Intelligence , vol.7 , pp. 39-55
    • Kononenko, I.1    Simec, E.2    Robnik-Sikonja, M.3
  • 23
    • 0002395288 scopus 로고
    • A Logical account of relevance
    • Lakemeyer, G. (1995). A Logical account of relevance. In Proc. of IJCAI-95 (pp. 853-859).
    • (1995) Proc. of IJCAI-95 , pp. 853-859
    • Lakemeyer, G.1
  • 24
    • 34250091945 scopus 로고
    • Learning quickly when irrelevant attributes abound: A new linear-threshold algorithm.
    • Littlestone, N. Learning quickly when irrelevant attributes abound: A new linear-threshold algorithm. (1988). Machine learning, 2, 285-318.
    • (1988) Machine Learning , vol.2 , pp. 285-318
    • Littlestone, N.1
  • 26
    • 0031189159 scopus 로고    scopus 로고
    • Feature selection via discretization of numeric attributes
    • Liu, H. & Setiono, R. (1997). Feature selection via discretization of numeric attributes. IEEE Trans on Knowledge and Data Engineering, 9(4), 642-645.
    • (1997) IEEE Trans on Knowledge and Data Engineering , vol.9 , Issue.4 , pp. 642-645
    • Liu, H.1    Setiono, R.2
  • 29
    • 0024627518 scopus 로고
    • Inferring decision trees using the minimum description length principle
    • Quinlan, J. & Rivest, R. (1989). Inferring decision trees using the minimum description length principle. Information and Computation, 80, 227-248.
    • (1989) Information and Computation , vol.80 , pp. 227-248
    • Quinlan, J.1    Rivest, R.2
  • 30
    • 0000318553 scopus 로고
    • Stochastic complexity and modeling
    • Rissanen, J. (1986). Stochastic complexity and modeling. Ann. Statist., 14, 1080-1100.
    • (1986) Ann. Statist. , vol.14 , pp. 1080-1100
    • Rissanen, J.1
  • 31
    • 85152626023 scopus 로고
    • Efficiently inducing determinations: A complete and systematic search algorithm that uses optimal pruning
    • Schlimmer, J. C. (1993). Efficiently inducing determinations: A complete and systematic search algorithm that uses optimal pruning. In ML93, pp. 284-290.
    • (1993) ML93 , pp. 284-290
    • Schlimmer, J.C.1
  • 33
    • 0018877134 scopus 로고
    • Axiomatic derivation of the principle of maximum entropy and the principle of minimum cross-entropy
    • Shore, J. E. & Johnson, R. W. (1980). Axiomatic derivation of the principle of maximum entropy and the principle of minimum cross-entropy. IEEE Trans. Information Theory, 26, 26-37.
    • (1980) IEEE Trans. Information Theory , vol.26 , pp. 26-37
    • Shore, J.E.1    Johnson, R.W.2
  • 34
    • 0012657799 scopus 로고
    • Prototype and feature selection by sampling and random mutation hill-climbing algorithms
    • New Brunswick, N.J.: Morgan Kaufmann
    • Skalak, D. B. (1994). Prototype and feature selection by sampling and random mutation hill-climbing algorithms. In Proceedings of the 11th International Conference on Machine Learning (pp. 293-301). New Brunswick, N.J.: Morgan Kaufmann.
    • (1994) Proceedings of the 11th International Conference on Machine Learning , pp. 293-301
    • Skalak, D.B.1
  • 38
    • 0342984513 scopus 로고    scopus 로고
    • Ph.D. Thesis, Faculty of Informatics, University of Ulster, N. Ireland, UK.
    • Wang, H. (1996). Towards a unified framework of relevance. Ph.D. Thesis, Faculty of Informatics, University of Ulster, N. Ireland, UK. http://www.infj.ulst.ac.uk/~cbcj23/thesis.ps.
    • (1996) Towards a Unified Framework of Relevance
    • Wang, H.1
  • 39
    • 0011867814 scopus 로고
    • The relationship between Occam's Razor and convergent guessing
    • Wolpert, D. H. (1990). The relationship between Occam's Razor and convergent guessing. Complex Systems, 4, 319-368.
    • (1990) Complex Systems , vol.4 , pp. 319-368
    • Wolpert, D.H.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.