-
1
-
-
0033536012
-
Broad patterns of gene expression revealed by clustering analysis of tumor and normal colon tissues probed by oligonucleotide arrays
-
U. Alon, N. Barkai, D. A. Notterman, et al. Broad patterns of gene expression revealed by clustering analysis of tumor and normal colon tissues probed by oligonucleotide arrays. Proc. Natl Acad. Sci. USA, 96:6745-6750, 1999.
-
(1999)
Proc. Natl Acad. Sci. USA
, vol.96
, pp. 6745-6750
-
-
Alon, U.1
Barkai, N.2
Notterman, D.A.3
-
2
-
-
14344265818
-
Redundant feature elimination for multi-class problems
-
A. Appice, M. Ceci, S. Rawles, and P. Flach. Redundant feature elimination for multi-class problems. In Proceedings of the 21st International Conference on Machine learning, pages 33-40, 2004.
-
(2004)
Proceedings of the 21st International Conference on Machine learning
, pp. 33-40
-
-
Appice, A.1
Ceci, M.2
Rawles, S.3
Flach, P.4
-
3
-
-
22944482840
-
Attribute clustering for grouping, selection, and classification of gene expression data
-
W. Au, K. C. C. Chan, A. K. C Wong, and Y. Wang. Attribute clustering for grouping, selection, and classification of gene expression data. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 2(2):83-101, 2005.
-
(2005)
IEEE/ACM Transactions on Computational Biology and Bioinformatics
, vol.2
, Issue.2
, pp. 83-101
-
-
Au, W.1
Chan, K.C.C.2
Wong, A.K.C.3
Wang, Y.4
-
4
-
-
30344487234
-
Fostering biological relevance in feature selection for microarray data
-
M. Berens, H. Liu, L. Parsons, L. Yu, and Z. Zhao. Fostering biological relevance in feature selection for microarray data. IEEE Intelligent Systems, 20(6):29-32, 2005.
-
(2005)
IEEE Intelligent Systems
, vol.20
, Issue.6
, pp. 29-32
-
-
Berens, M.1
Liu, H.2
Parsons, L.3
Yu, L.4
Zhao, Z.5
-
6
-
-
34547975736
-
Feature selection in a kernel space
-
B. Cao, D. Shen, J. Sun, Q. Yang, and Z. Chen. Feature selection in a kernel space. In Proceedings of the 24th International Conference on Machine learning, pages 121-127, 2007.
-
(2007)
Proceedings of the 24th International Conference on Machine learning
, pp. 121-127
-
-
Cao, B.1
Shen, D.2
Sun, J.3
Yang, Q.4
Chen, Z.5
-
9
-
-
0242302657
-
Consistency-based search in feature selection
-
M. Dash and H. Liu. Consistency-based search in feature selection. Artificial Intelligence, 151(1-2):155-176, 2003.
-
(2003)
Artificial Intelligence
, vol.151
, Issue.1-2
, pp. 155-176
-
-
Dash, M.1
Liu, H.2
-
10
-
-
33750009273
-
Reliable gene signatures for microarray classification: Assessment of stability and performance
-
C. A. Davis, F. Gerick, V. Hintermair, C. C. Friedel, K. Fundel, R. Küffner, and R. Zimmer. Reliable gene signatures for microarray classification: assessment of stability and performance. Bioinformatics, 22:2356-2363, 2006.
-
(2006)
Bioinformatics
, vol.22
, pp. 2356-2363
-
-
Davis, C.A.1
Gerick, F.2
Hintermair, V.3
Friedel, C.C.4
Fundel, K.5
Küffner, R.6
Zimmer, R.7
-
12
-
-
13444282534
-
Outcome signature genes in breast cancer: Is there a unique set?
-
L. Ein-Dor, I. Kela, G. Getz, D. Givol, and E. Domany. Outcome signature genes in breast cancer: is there a unique set? Bioinformatics, 21:171-178, 2005.
-
(2005)
Bioinformatics
, vol.21
, pp. 171-178
-
-
Ein-Dor, L.1
Kela, I.2
Getz, G.3
Givol, D.4
Domany, E.5
-
13
-
-
2942731012
-
An extensive empirical study of feature selection metrics for text classification
-
G. Forman. An extensive empirical study of feature selection metrics for text classification. Journal of Machine Learning Research, 3:1289-1305, 2003.
-
(2003)
Journal of Machine Learning Research
, vol.3
, pp. 1289-1305
-
-
Forman, G.1
-
14
-
-
0036161259
-
Gene selection for cancer classification using support vector machines
-
I. Guyon, J. Weston, S. Barnhill, and V. Vapnik. Gene selection for cancer classification using support vector machines. Machine Learning, 46:389-422, 2002.
-
(2002)
Machine Learning
, vol.46
, pp. 389-422
-
-
Guyon, I.1
Weston, J.2
Barnhill, S.3
Vapnik, V.4
-
15
-
-
0035226961
-
Supervised harvesting of expression trees
-
T. Hastie, R. Tibshirani, D. Botstein, and P. Brown. Supervised harvesting of expression trees. Genome Biology, 2:0003.1-0003.12, 2001.
-
(2001)
Genome Biology
, vol.2
-
-
Hastie, T.1
Tibshirani, R.2
Botstein, D.3
Brown, P.4
-
16
-
-
0037715342
-
Simultaneous gene clustering and subset selection for sample classification via MDL
-
R. Jörnsten and B. Yu. Simultaneous gene clustering and subset selection for sample classification via MDL. Bioinformatics, 19:1100-1109, 2003.
-
(2003)
Bioinformatics
, vol.19
, pp. 1100-1109
-
-
Jörnsten, R.1
Yu, B.2
-
17
-
-
34248647608
-
Stability of feature selection algorithms: A study on high-dimensional spaces
-
A. Kalousis, J. Prados, and M. Hilario. Stability of feature selection algorithms: a study on high-dimensional spaces. Knowledge and Information Systems, 12:95-116, 2007.
-
(2007)
Knowledge and Information Systems
, vol.12
, pp. 95-116
-
-
Kalousis, A.1
Prados, J.2
Hilario, M.3
-
18
-
-
0031381525
-
Wrappers for feature subset selection
-
R. Kohavi and G. H. John. Wrappers for feature subset selection. Artificial Intelligence, 97(1-2):273-324, 1997.
-
(1997)
Artificial Intelligence
, vol.97
, Issue.1-2
, pp. 273-324
-
-
Kohavi, R.1
John, G.H.2
-
20
-
-
7244248755
-
A comparative study of feature selection and multiclass classification methods for tissue classification based on gene expression
-
T. Li, C. Zhang, and M. Ogihara. A comparative study of feature selection and multiclass classification methods for tissue classification based on gene expression. Bioinformatics, 20:2429-2437, 2004.
-
(2004)
Bioinformatics
, vol.20
, pp. 2429-2437
-
-
Li, T.1
Zhang, C.2
Ogihara, M.3
-
21
-
-
17044405923
-
Toward integrating feature selection algorithms for classification and clustering
-
H. Liu and L. Yu. Toward integrating feature selection algorithms for classification and clustering. IEEE Trans. on Knowledge and Data Engineering, 17(3):1-12, 2005.
-
(2005)
IEEE Trans. on Knowledge and Data Engineering
, vol.17
, Issue.3
, pp. 1-12
-
-
Liu, H.1
Yu, L.2
-
22
-
-
24344458137
-
Feature selection based on mutual information: Criteria of max-dependency, max-relevance, and min-redundancy
-
H. Peng, F. Long, and C. Ding. Feature selection based on mutual information: criteria of max-dependency, max-relevance, and min-redundancy. IEEE Trans. on Pattern Analysis and Machine Intelligence, 27:1226-1238, 2005.
-
(2005)
IEEE Trans. on Pattern Analysis and Machine Intelligence
, vol.27
, pp. 1226-1238
-
-
Peng, H.1
Long, F.2
Ding, C.3
-
23
-
-
0035908491
-
Phases of biomarker development for early detection of cancer
-
M. S. Pepe, R. Etzioni, Z. Feng, et al. Phases of biomarker development for early detection of cancer. J Natl Cancer Inst, 93:1054-1060, 2001.
-
(2001)
J Natl Cancer Inst
, vol.93
, pp. 1054-1060
-
-
Pepe, M.S.1
Etzioni, R.2
Feng, Z.3
-
24
-
-
0141990695
-
Theoretical and empirical analysis of Relief and ReliefF
-
M. Robnik-Sikonja and I. Kononenko. Theoretical and empirical analysis of Relief and ReliefF. Machine Learning, 53:23-69, 2003.
-
(2003)
Machine Learning
, vol.53
, pp. 23-69
-
-
Robnik-Sikonja, M.1
Kononenko, I.2
-
25
-
-
0042923097
-
Class prediction and discovery using gene microarray and proteomics mass spectroscopy data: Curses, caveats, cautions
-
R. L. Somorjai, B. Dolenko, and R. Baumgartner. Class prediction and discovery using gene microarray and proteomics mass spectroscopy data: curses, caveats, cautions. Bioinformatics, 19:1484-1491, 2003.
-
(2003)
Bioinformatics
, vol.19
, pp. 1484-1491
-
-
Somorjai, R.L.1
Dolenko, B.2
Baumgartner, R.3
-
30
-
-
25144492516
-
Efficient feature selection via analysis of relevance and redundancy
-
L. Yu and H. Liu. Efficient feature selection via analysis of relevance and redundancy. Journal of Machine Learning Research, 5:1205-1224, 2004.
-
(2004)
Journal of Machine Learning Research
, vol.5
, pp. 1205-1224
-
-
Yu, L.1
Liu, H.2
|