메뉴 건너뛰기




Volumn , Issue , 2008, Pages 803-811

Stable feature selection via dense feature groups

Author keywords

Classification; Feature selection; High dimensional data; Kernel density estimation; Stability

Indexed keywords

CLASSIFICATION; CLASSIFICATION ACCURACIES; EFFICIENT ALGORITHMS; EMPIRICAL STUDIES; FEATURE GROUPS; FEATURE SELECTION; FEATURE SELECTION ALGORITHMS; HIGH-DIMENSIONAL DATA; KERNEL DENSITY ESTIMATION; KNOWLEDGE DISCOVERIES; MICROARRAY DATUM; MINIMUM SUBSETS; RANDOM SAMPLES; REDUNDANT FEATURES; SMALL SAMPLE SIZES;

EID: 65449150247     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1145/1401890.1401986     Document Type: Conference Paper
Times cited : (164)

References (31)
  • 1
    • 0033536012 scopus 로고    scopus 로고
    • Broad patterns of gene expression revealed by clustering analysis of tumor and normal colon tissues probed by oligonucleotide arrays
    • U. Alon, N. Barkai, D. A. Notterman, et al. Broad patterns of gene expression revealed by clustering analysis of tumor and normal colon tissues probed by oligonucleotide arrays. Proc. Natl Acad. Sci. USA, 96:6745-6750, 1999.
    • (1999) Proc. Natl Acad. Sci. USA , vol.96 , pp. 6745-6750
    • Alon, U.1    Barkai, N.2    Notterman, D.A.3
  • 4
    • 30344487234 scopus 로고    scopus 로고
    • Fostering biological relevance in feature selection for microarray data
    • M. Berens, H. Liu, L. Parsons, L. Yu, and Z. Zhao. Fostering biological relevance in feature selection for microarray data. IEEE Intelligent Systems, 20(6):29-32, 2005.
    • (2005) IEEE Intelligent Systems , vol.20 , Issue.6 , pp. 29-32
    • Berens, M.1    Liu, H.2    Parsons, L.3    Yu, L.4    Zhao, Z.5
  • 9
    • 0242302657 scopus 로고    scopus 로고
    • Consistency-based search in feature selection
    • M. Dash and H. Liu. Consistency-based search in feature selection. Artificial Intelligence, 151(1-2):155-176, 2003.
    • (2003) Artificial Intelligence , vol.151 , Issue.1-2 , pp. 155-176
    • Dash, M.1    Liu, H.2
  • 10
  • 12
    • 13444282534 scopus 로고    scopus 로고
    • Outcome signature genes in breast cancer: Is there a unique set?
    • L. Ein-Dor, I. Kela, G. Getz, D. Givol, and E. Domany. Outcome signature genes in breast cancer: is there a unique set? Bioinformatics, 21:171-178, 2005.
    • (2005) Bioinformatics , vol.21 , pp. 171-178
    • Ein-Dor, L.1    Kela, I.2    Getz, G.3    Givol, D.4    Domany, E.5
  • 13
    • 2942731012 scopus 로고    scopus 로고
    • An extensive empirical study of feature selection metrics for text classification
    • G. Forman. An extensive empirical study of feature selection metrics for text classification. Journal of Machine Learning Research, 3:1289-1305, 2003.
    • (2003) Journal of Machine Learning Research , vol.3 , pp. 1289-1305
    • Forman, G.1
  • 14
    • 0036161259 scopus 로고    scopus 로고
    • Gene selection for cancer classification using support vector machines
    • I. Guyon, J. Weston, S. Barnhill, and V. Vapnik. Gene selection for cancer classification using support vector machines. Machine Learning, 46:389-422, 2002.
    • (2002) Machine Learning , vol.46 , pp. 389-422
    • Guyon, I.1    Weston, J.2    Barnhill, S.3    Vapnik, V.4
  • 16
    • 0037715342 scopus 로고    scopus 로고
    • Simultaneous gene clustering and subset selection for sample classification via MDL
    • R. Jörnsten and B. Yu. Simultaneous gene clustering and subset selection for sample classification via MDL. Bioinformatics, 19:1100-1109, 2003.
    • (2003) Bioinformatics , vol.19 , pp. 1100-1109
    • Jörnsten, R.1    Yu, B.2
  • 17
    • 34248647608 scopus 로고    scopus 로고
    • Stability of feature selection algorithms: A study on high-dimensional spaces
    • A. Kalousis, J. Prados, and M. Hilario. Stability of feature selection algorithms: a study on high-dimensional spaces. Knowledge and Information Systems, 12:95-116, 2007.
    • (2007) Knowledge and Information Systems , vol.12 , pp. 95-116
    • Kalousis, A.1    Prados, J.2    Hilario, M.3
  • 18
    • 0031381525 scopus 로고    scopus 로고
    • Wrappers for feature subset selection
    • R. Kohavi and G. H. John. Wrappers for feature subset selection. Artificial Intelligence, 97(1-2):273-324, 1997.
    • (1997) Artificial Intelligence , vol.97 , Issue.1-2 , pp. 273-324
    • Kohavi, R.1    John, G.H.2
  • 20
    • 7244248755 scopus 로고    scopus 로고
    • A comparative study of feature selection and multiclass classification methods for tissue classification based on gene expression
    • T. Li, C. Zhang, and M. Ogihara. A comparative study of feature selection and multiclass classification methods for tissue classification based on gene expression. Bioinformatics, 20:2429-2437, 2004.
    • (2004) Bioinformatics , vol.20 , pp. 2429-2437
    • Li, T.1    Zhang, C.2    Ogihara, M.3
  • 21
    • 17044405923 scopus 로고    scopus 로고
    • Toward integrating feature selection algorithms for classification and clustering
    • H. Liu and L. Yu. Toward integrating feature selection algorithms for classification and clustering. IEEE Trans. on Knowledge and Data Engineering, 17(3):1-12, 2005.
    • (2005) IEEE Trans. on Knowledge and Data Engineering , vol.17 , Issue.3 , pp. 1-12
    • Liu, H.1    Yu, L.2
  • 22
    • 24344458137 scopus 로고    scopus 로고
    • Feature selection based on mutual information: Criteria of max-dependency, max-relevance, and min-redundancy
    • H. Peng, F. Long, and C. Ding. Feature selection based on mutual information: criteria of max-dependency, max-relevance, and min-redundancy. IEEE Trans. on Pattern Analysis and Machine Intelligence, 27:1226-1238, 2005.
    • (2005) IEEE Trans. on Pattern Analysis and Machine Intelligence , vol.27 , pp. 1226-1238
    • Peng, H.1    Long, F.2    Ding, C.3
  • 23
    • 0035908491 scopus 로고    scopus 로고
    • Phases of biomarker development for early detection of cancer
    • M. S. Pepe, R. Etzioni, Z. Feng, et al. Phases of biomarker development for early detection of cancer. J Natl Cancer Inst, 93:1054-1060, 2001.
    • (2001) J Natl Cancer Inst , vol.93 , pp. 1054-1060
    • Pepe, M.S.1    Etzioni, R.2    Feng, Z.3
  • 24
    • 0141990695 scopus 로고    scopus 로고
    • Theoretical and empirical analysis of Relief and ReliefF
    • M. Robnik-Sikonja and I. Kononenko. Theoretical and empirical analysis of Relief and ReliefF. Machine Learning, 53:23-69, 2003.
    • (2003) Machine Learning , vol.53 , pp. 23-69
    • Robnik-Sikonja, M.1    Kononenko, I.2
  • 25
    • 0042923097 scopus 로고    scopus 로고
    • Class prediction and discovery using gene microarray and proteomics mass spectroscopy data: Curses, caveats, cautions
    • R. L. Somorjai, B. Dolenko, and R. Baumgartner. Class prediction and discovery using gene microarray and proteomics mass spectroscopy data: curses, caveats, cautions. Bioinformatics, 19:1484-1491, 2003.
    • (2003) Bioinformatics , vol.19 , pp. 1484-1491
    • Somorjai, R.L.1    Dolenko, B.2    Baumgartner, R.3
  • 30
    • 25144492516 scopus 로고    scopus 로고
    • Efficient feature selection via analysis of relevance and redundancy
    • L. Yu and H. Liu. Efficient feature selection via analysis of relevance and redundancy. Journal of Machine Learning Research, 5:1205-1224, 2004.
    • (2004) Journal of Machine Learning Research , vol.5 , pp. 1205-1224
    • Yu, L.1    Liu, H.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.