-
3
-
-
0242372960
-
Efficiently learning the metric with side-information
-
Springer-Verlag Heidelberg
-
T. D. Bie, M. Momma, and N. Cristianini. Efficiently learning the metric with side-information. In Algorithmic Learning Theory (ALT2003), pages 175-189. Springer-Verlag Heidelberg, 2003.
-
(2003)
Algorithmic Learning Theory (ALT2003)
, pp. 175-189
-
-
Bie, T.D.1
Momma, M.2
Cristianini, N.3
-
5
-
-
0003554988
-
Support vector machines for large-scale regression problems
-
R. Collobert and S. Bengio. Support vector machines for large-scale regression problems. IDIAP-RR-00-17, 2000.
-
(2000)
IDIAP-RR-00-17
-
-
Collobert, R.1
Bengio, S.2
-
7
-
-
0027530250
-
SIMPLS: An alternetive approach to partial least squares regression
-
S. de Jong. SIMPLS: an alternetive approach to partial least squares regression. Chemometrics and Intelligent Laboratory Systems, 18:251-273, 1993.
-
(1993)
Chemometrics and Intelligent Laboratory Systems
, vol.18
, pp. 251-273
-
-
De Jong, S.1
-
8
-
-
0001742646
-
Implementing partial least squares
-
[81 M. C. Denham. Implementing partial least squares. Statics and Computing, 5:191-202, 1995.
-
(1995)
Statics and Computing
, vol.5
, pp. 191-202
-
-
Denham, M.C.1
-
9
-
-
8644245385
-
Gradient directed regularization of linear regression and classification
-
Stanford University
-
J. H. Friedman and B. E. Popescu. Gradient directed regularization of linear regression and classification. Technical report, Stanford University, 2004.
-
(2004)
Technical Report
-
-
Friedman, J.H.1
Popescu, B.E.2
-
12
-
-
0010861757
-
Boosting algorithms as gradient descent in function space
-
RSISE, Australian National University
-
L. Mason, J. Baxter, P. Bartlett, and M. Frean. Boosting algorithms as gradient descent in function space. Technical report, RSISE, Australian National University, 1999.
-
(1999)
Technical Report
-
-
Mason, L.1
Baxter, J.2
Bartlett, P.3
Frean, M.4
-
13
-
-
84858540601
-
Efficient computations via scalable sparse kernel partial least squares and boosted latent features
-
M. Momma. Efficient computations via scalable sparse kernel partial least squares and boosted latent features. Technical report, 2005. http://www.rpi.edu/~momman/.
-
(2005)
Technical Report
-
-
Momma, M.1
-
14
-
-
38949163487
-
Constructing orthogonal latent features for arbitrary loss
-
I. Guyon, S. Gunn, M. Nikravesh, and L. Zadeh, editors, Springer
-
M. Momma and K. Bennett. Constructing orthogonal latent features for arbitrary loss. In I. Guyon, S. Gunn, M. Nikravesh, and L. Zadeh, editors, Feature Extraction, Foundations and Applications, Springer, 2004.
-
(2004)
Feature Extraction, Foundations and Applications
-
-
Momma, M.1
Bennett, K.2
-
16
-
-
0141607828
-
Some greedy learning algorithms for sparse regression and classification with mercer kernels
-
P. B. Nair, A. Choudhury, and A. J. Keane. Some greedy learning algorithms for sparse regression and classification with mercer kernels. Journal of Machine Learning Research, 3:781-801, 2002.
-
(2002)
Journal of Machine Learning Research
, vol.3
, pp. 781-801
-
-
Nair, P.B.1
Choudhury, A.2
Keane, A.J.3
-
18
-
-
0038259120
-
Kernel partial least squares regression in reproducing kernel Hubert space
-
R. Rosipal and L. T. Trejo. Kernel partial least squares regression in reproducing kernel Hubert space. Journal of Machine Learning Research, 2:97-123, 2001.
-
(2001)
Journal of Machine Learning Research
, vol.2
, pp. 97-123
-
-
Rosipal, R.1
Trejo, L.T.2
-
19
-
-
0001098205
-
Estimation of principal components and related models by iterative least squares
-
New York, Academic Press
-
H. Wold. Estimation of principal components and related models by iterative least squares. In Multivariate Analysis, pages 391-420, New York, 1966, Academic Press.
-
(1966)
Multivariate Analysis
, pp. 391-420
-
-
Wold, H.1
|