-
1
-
-
36849072723
-
-
MIT Press, Cambridge, Massachusetts
-
G. Bakir, T. Hofmann, B. Schölkopf, A. Smola, B. Taskar, and S. V. N. Vishwanathan. Predicting Structured Data. MIT Press, Cambridge, Massachusetts, 2007.
-
(2007)
Predicting Structured Data
-
-
Bakir, G.1
Hofmann, T.2
Schölkopf, B.3
Smola, A.4
Taskar, B.5
Vishwanathan, S.V.N.6
-
2
-
-
36849086546
-
PBTSc users manual
-
Technical Report ANL-95/11, Argonne National Laboratory
-
S. Balay, K. Buschelman, V. Eijkhout, W. D. Gropp, D. Kaushik, M. G. Knepley, L. C. Mclnnes, B. F. Smith, and H. Zhang. PBTSc users manual. Technical Report ANL-95/11, Argonne National Laboratory, 2006.
-
(2006)
-
-
Balay, S.1
Buschelman, K.2
Eijkhout, V.3
Gropp, W.D.4
Kaushik, D.5
Knepley, M.G.6
Mclnnes, L.C.7
Smith, B.F.8
Zhang, H.9
-
4
-
-
0026860799
-
Robust linear programming discrimination of two linearly inseparable sets
-
K. P. Bennett and O. L. Mangasarian. Robust linear programming discrimination of two linearly inseparable sets. Optim. Methods Softw., 1:23-34, 1992.
-
(1992)
Optim. Methods Softw
, vol.1
, pp. 23-34
-
-
Bennett, K.P.1
Mangasarian, O.L.2
-
5
-
-
36849023213
-
-
S. Benson, L. Curfman-McInnes, J. Moré, and J. Sarich. TAO user manual. Technical Report ANL/MCS-TM-242, Argonne National Laboratory, 2004.
-
S. Benson, L. Curfman-McInnes, J. Moré, and J. Sarich. TAO user manual. Technical Report ANL/MCS-TM-242, Argonne National Laboratory, 2004.
-
-
-
-
6
-
-
0000732463
-
A limited memory algorithm for bound constrained optimization
-
R. Byrd, P. Lu, J. Nocedal, and C. Zhu. A limited memory algorithm for bound constrained optimization. SIAM Journal on Scientific Computing, 16(5):1190-1208, 1995.
-
(1995)
SIAM Journal on Scientific Computing
, vol.16
, Issue.5
, pp. 1190-1208
-
-
Byrd, R.1
Lu, P.2
Nocedal, J.3
Zhu, C.4
-
7
-
-
18744367558
-
Hierarchical document categorization with support vector machines
-
New York, NY, USA, ACM Press
-
L. Cai and T. Hofmann. Hierarchical document categorization with support vector machines. In Proc. of ACM conference on info. and knowledge mgmt., pages 78-87, New York, NY, USA, 2004. ACM Press.
-
(2004)
Proc. of ACM conference on info. and knowledge mgmt
, pp. 78-87
-
-
Cai, L.1
Hofmann, T.2
-
8
-
-
29144439194
-
Decoding by linear programming
-
B. Candes and T. Tao. Decoding by linear programming. IEEE Trans. Info Theory, 51(12):4203-4215, 2005.
-
(2005)
IEEE Trans. Info Theory
, vol.51
, Issue.12
, pp. 4203-4215
-
-
Candes, B.1
Tao, T.2
-
10
-
-
33749246680
-
Training a support vector machine in the primal
-
Max Planck Institute for Biological Cybernetics
-
O. Chapelle. Training a support vector machine in the primal. Technical Report TR. 147, Max Planck Institute for Biological Cybernetics, 2006.
-
(2006)
Technical Report TR
, vol.147
-
-
Chapelle, O.1
-
11
-
-
56049109090
-
Map-reduce for machine learning on multicore
-
C. Chu, S. Kim, Y. A. Lin, Y. Y. Yu, G. Bradski, A. Ng, and K. Olukotun. Map-reduce for machine learning on multicore. In NIPS 19, 2007.
-
(2007)
NIPS 19
-
-
Chu, C.1
Kim, S.2
Lin, Y.A.3
Yu, Y.Y.4
Bradski, G.5
Ng, A.6
Olukotun, K.7
-
12
-
-
10044273842
-
Tools for Privacy Preserving Distributed Data Mining
-
December
-
C. Clifton, M. Kantarcioglu, J. Vaidya, X. Lin, , and M. Zhu. Tools for Privacy Preserving Distributed Data Mining. AGM SIGKDD Explorations, 4(2), December 2002.
-
(2002)
AGM SIGKDD Explorations
, vol.4
, Issue.2
-
-
Clifton, C.1
Kantarcioglu, M.2
Vaidya, J.3
Lin, X.4
Zhu, M.5
-
13
-
-
0001087620
-
Logistic regression, AdaBoost and Bregman distances
-
Morgan Kaufmann, San Francisco
-
M. Collins, R. B. Schapire, and Y. Singer. Logistic regression, AdaBoost and Bregman distances. In COLT, pages 158-169. Morgan Kaufmann, San Francisco, 2000.
-
(2000)
COLT
, pp. 158-169
-
-
Collins, M.1
Schapire, R.B.2
Singer, Y.3
-
14
-
-
0003687180
-
-
Springer, New York
-
R. Cowell, A. David, S. Lauritzen, and D. Spiegelhalter. Probabilistic Networks and Expert Sytems. Springer, New York, 1999.
-
(1999)
Probabilistic Networks and Expert Sytems
-
-
Cowell, R.1
David, A.2
Lauritzen, S.3
Spiegelhalter, D.4
-
15
-
-
14544278410
-
Online ranking by projecting
-
K. Crammer and Y. Singer. Online ranking by projecting. Neural Computation, 17(1):145-175, 2005.
-
(2005)
Neural Computation
, vol.17
, Issue.1
, pp. 145-175
-
-
Crammer, K.1
Singer, Y.2
-
18
-
-
0141692489
-
Efficient SVM training using low-rank kernel representation
-
Technical report, IBM Watson Research Center, New York
-
S. Fine and K. Scheinberg. Efficient SVM training using low-rank kernel representation. Technical report, IBM Watson Research Center, New York, 2000.
-
(2000)
-
-
Fine, S.1
Scheinberg, K.2
-
19
-
-
0041494125
-
Efficient SVM training using low-rank kernel representations
-
S. Fine and K. Scheinberg. Efficient SVM training using low-rank kernel representations. JMLR, 2001.
-
(2001)
JMLR
-
-
Fine, S.1
Scheinberg, K.2
-
20
-
-
84898954071
-
Linear hinge loss and average margin
-
Cambridge, MA
-
C. Gentile and M. K. Warmuth. Linear hinge loss and average margin. In NIPS 11, pages 225-231, Cambridge, MA, 1999.
-
(1999)
NIPS 11
, pp. 225-231
-
-
Gentile, C.1
Warmuth, M.K.2
-
21
-
-
0008371352
-
Large margin rank boundaries for ordinal regression
-
A. J. Smola, P. L. Bartlett, B. Schölkopf, and D. Schuurmans, editors, Cambridge, MA, MIT Press
-
R. Herbrich, T. Graepel, and K. Obermayer. Large margin rank boundaries for ordinal regression. In A. J. Smola, P. L. Bartlett, B. Schölkopf, and D. Schuurmans, editors, Advances in Large Margin Classifiers, pages 115-132, Cambridge, MA, 2000. MIT Press.
-
(2000)
Advances in Large Margin Classifiers
, pp. 115-132
-
-
Herbrich, R.1
Graepel, T.2
Obermayer, K.3
-
23
-
-
0002714543
-
Making large-scale SVM learning practical
-
B. Schölkopf, C. J. C. Burges, and A. J. Smola, editors, Cambridge, MA, MIT Press
-
T. Joachims. Making large-scale SVM learning practical. In B. Schölkopf, C. J. C. Burges, and A. J. Smola, editors, Advances in Kernel Methods - Support Vector Learning, pages 169-184, Cambridge, MA, 1999. MIT Press.
-
(1999)
Advances in Kernel Methods - Support Vector Learning
, pp. 169-184
-
-
Joachims, T.1
-
24
-
-
31844446804
-
A support vector method for multivariate performance measures
-
San Francisco, California, Morgan Kaufmann Publishers
-
T. Joachims. A support vector method for multivariate performance measures. In ICML, pages 377-384, San Francisco, California, 2005. Morgan Kaufmann Publishers.
-
(2005)
ICML
, pp. 377-384
-
-
Joachims, T.1
-
25
-
-
33749563073
-
-
T. Joachims. Training linear SVMs in linear time. In KDD, 2006.
-
T. Joachims. Training linear SVMs in linear time. In KDD, 2006.
-
-
-
-
26
-
-
21844461582
-
A modified finite Newton method for fast solution of large scale linear SVMs
-
S. S. Keerthi and D. DeCoste. A modified finite Newton method for fast solution of large scale linear SVMs. JMLR, 6:341-361, 2005.
-
(2005)
JMLR
, vol.6
, pp. 341-361
-
-
Keerthi, S.S.1
DeCoste, D.2
-
28
-
-
0142192295
-
Conditional random fields: Probabilistic modeling for segmenting and labeling sequence data
-
J. D. Lafferty, A. McCallum, and F. Pereira. Conditional random fields: Probabilistic modeling for segmenting and labeling sequence data. In ICML, volume 18, pages 282-289, 2001.
-
(2001)
ICML
, vol.18
, pp. 282-289
-
-
Lafferty, J.D.1
McCallum, A.2
Pereira, F.3
-
29
-
-
79952602419
-
Direct optimization of ranking measures
-
submitted
-
Q. Le and A. Smola. Direct optimization of ranking measures. JMLR, 2007. submitted.
-
(2007)
JMLR
-
-
Le, Q.1
Smola, A.2
-
30
-
-
0000963583
-
Linear and nonlinear separation of patterns by linear programming
-
O. L. Mangasarian. Linear and nonlinear separation of patterns by linear programming. Oper. Res., 13:444-452, 1965.
-
(1965)
Oper. Res
, vol.13
, pp. 444-452
-
-
Mangasarian, O.L.1
-
31
-
-
84956628443
-
-
K.-R. Müller, A. J. Smola, G. Rätsch, B. Schölkopf, J. Kohlmorgen, and V. Vapnik. Predicting time series with support vector machines. In ICANN'97, pages 999-1004, 1997.
-
K.-R. Müller, A. J. Smola, G. Rätsch, B. Schölkopf, J. Kohlmorgen, and V. Vapnik. Predicting time series with support vector machines. In ICANN'97, pages 999-1004, 1997.
-
-
-
-
32
-
-
36849004677
-
-
B. Schölkopf, J. Platt, J. Shawe-Taylor, A. J. Smola, and R. C. Williamson. Estimating the support of a high-dimensional distribution. TR 87, Microsoft Research, Redmond, WA, 1999.
-
B. Schölkopf, J. Platt, J. Shawe-Taylor, A. J. Smola, and R. C. Williamson. Estimating the support of a high-dimensional distribution. TR 87, Microsoft Research, Redmond, WA, 1999.
-
-
-
-
33
-
-
0000487102
-
Estimating the support of a high-dimensional distribution
-
B. Schölkopf, J. Platt, J. Shawe-Taylor, A. J. Smola, and R. C. Williamson. Estimating the support of a high-dimensional distribution. Neural Comput., 13(7):1443-1471, 2001.
-
(2001)
Neural Comput
, vol.13
, Issue.7
, pp. 1443-1471
-
-
Schölkopf, B.1
Platt, J.2
Shawe-Taylor, J.3
Smola, A.J.4
Williamson, R.C.5
-
34
-
-
85043116988
-
Shallow parsing with conditional random fields
-
F. Sha and F. Pereira. Shallow parsing with conditional random fields. In Proceedings of HLT-NAACL, pages 213-220, 2003.
-
(2003)
Proceedings of HLT-NAACL
, pp. 213-220
-
-
Sha, F.1
Pereira, F.2
-
35
-
-
36849029369
-
Online learning meets optimization in the dual
-
extended version
-
S. Shalev-Shwartz and Y. Singer. Online learning meets optimization in the dual. In COLT, 2006. extended version.
-
(2006)
COLT
-
-
Shalev-Shwartz, S.1
Singer, Y.2
-
36
-
-
33750373672
-
Large scale semi-supervised linear svms
-
New York, NY, USA, ACM Press
-
V. Sindhwani and S. Keerthi. Large scale semi-supervised linear svms. In SIGIR '06, pages 477-484, New York, NY, USA, 2006. ACM Press.
-
(2006)
SIGIR '06
, pp. 477-484
-
-
Sindhwani, V.1
Keerthi, S.2
-
38
-
-
84898948585
-
Max-margin Markov networks
-
B. Taskar, C. Guestrin, and D. Koller. Max-margin Markov networks. In NIPS, pages 25-32, 2004.
-
(2004)
NIPS
, pp. 25-32
-
-
Taskar, B.1
Guestrin, C.2
Koller, D.3
-
39
-
-
0001287271
-
Regression shrinkage and selection via the lasso
-
R. Tibshirani. Regression shrinkage and selection via the lasso. J. R. Stat. Soc. Ser. B Stat. Methodol., 58:267-288, 1996.
-
(1996)
J. R. Stat. Soc. Ser. B Stat. Methodol
, vol.58
, pp. 267-288
-
-
Tibshirani, R.1
-
40
-
-
24944537843
-
Large margin methods for structured and interdependent output variables
-
I. Tsochantaridis, T. Joachims, T. Hofmann, and Y. Altun. Large margin methods for structured and interdependent output variables. JMLR, 6:1453-1484, 2005.
-
(2005)
JMLR
, vol.6
, pp. 1453-1484
-
-
Tsochantaridis, I.1
Joachims, T.2
Hofmann, T.3
Altun, Y.4
-
41
-
-
84887252594
-
Support vector method for function approximation, regression estimation, and signal processing
-
V. Vapnik, S. Golowich, and A. J. Smola. Support vector method for function approximation, regression estimation, and signal processing. In NIPS, pages 281-287, 1997.
-
(1997)
NIPS
, pp. 281-287
-
-
Vapnik, V.1
Golowich, S.2
Smola, A.J.3
-
42
-
-
84898962121
-
Fast kernels for string and tree matching
-
S. V. N. Vishwanathan and A. J. Smola. Fast kernels for string and tree matching. In NIPS, pages 569-576, 2003.
-
(2003)
NIPS
, pp. 569-576
-
-
Vishwanathan, S.V.N.1
Smola, A.J.2
-
43
-
-
0003017575
-
Prediction with Gaussian processes: From linear regression to linear prediction and beyond
-
M. I. Jordan, editor, Kluwer Academic
-
C. K. I. Williams. Prediction with Gaussian processes: From linear regression to linear prediction and beyond. In M. I. Jordan, editor, Learning and Inference in Graphical Models, pages 599-621. Kluwer Academic, 1998.
-
(1998)
Learning and Inference in Graphical Models
, pp. 599-621
-
-
Williams, C.K.I.1
|