메뉴 건너뛰기




Volumn 73, Issue 1, 2009, Pages 17-25

Combining cluster analysis, feature selection and multiple support vector machine models for the identification of human ether-a-go-go related gene channel blocking compounds

Author keywords

Cluster analysis; Feature selection; Human ether a go go related gene; MACCS keys; Quantitative structure activity relationship; Support vector machines

Indexed keywords

ALOSETRON; AMIODARONE; ASTEMIZOLE; CISAPRIDE; CLOFILIUM; DOFETILIDE; FLUVOXAMINE; OLANZAPINE; POTASSIUM CHANNEL BLOCKING AGENT; POTASSIUM CHANNEL HERG; SERTINDOLE; TERFENADINE; TOLTERODINE; VERAPAMIL;

EID: 58149086468     PISSN: 17470277     EISSN: None     Source Type: Journal    
DOI: 10.1111/j.1747-0285.2008.00747.x     Document Type: Article
Times cited : (25)

References (41)
  • 1
    • 0037364162 scopus 로고    scopus 로고
    • ADMET in silico modelling: Towards prediction paradise
    • Van de Waterbeemd H., Gifford E. (2003) ADMET in silico modelling: towards prediction paradise. Nat Rev Drug Discov 2 : 192 204.
    • (2003) Nat Rev Drug Discov , vol.2 , pp. 192-204
    • Van De Waterbeemd, H.1    Gifford, E.2
  • 2
    • 0028292927 scopus 로고
    • A family of potassium channel genes related to eag in drosophila and mammals
    • Warmke J.W., Ganetzky B. (1994) A family of potassium channel genes related to eag in drosophila and mammals. Proc Natl Acad Sci USA 91 : 3438 3442.
    • (1994) Proc Natl Acad Sci USA , vol.91 , pp. 3438-3442
    • Warmke, J.W.1    Ganetzky, B.2
  • 3
    • 0033530381 scopus 로고    scopus 로고
    • Long QT syndromes and torsades de pointes
    • Viskin S. (1999) Long QT syndromes and torsades de pointes. Lancet 354 : 1625 1633.
    • (1999) Lancet , vol.354 , pp. 1625-1633
    • Viskin, S.1
  • 4
    • 0038471102 scopus 로고    scopus 로고
    • The impact of drug-induced QT interval prolongation on drug discovery and development
    • Fermini B., Fossa A.A. (2003) The impact of drug-induced QT interval prolongation on drug discovery and development. Nat Rev Drug Discov 2 : 439 447.
    • (2003) Nat Rev Drug Discov , vol.2 , pp. 439-447
    • Fermini, B.1    Fossa, A.A.2
  • 6
    • 2442562493 scopus 로고    scopus 로고
    • Drugs, hERG and sudden death
    • Brown A. (2004) Drugs, hERG and sudden death. Cell Calcium 35 : 534 546.
    • (2004) Cell Calcium , vol.35 , pp. 534-546
    • Brown, A.1
  • 7
    • 36849084612 scopus 로고    scopus 로고
    • Predictive models for hERG channel blockers: Ligand-based and structure-based approaches
    • Thai K.-M., Eckert G.F. (2007) Predictive models for hERG channel blockers: ligand-based and structure-based approaches. Curr Med Chem 14 : 3003 3026.
    • (2007) Curr Med Chem , vol.14 , pp. 3003-3026
    • Thai, K.-M.1    Eckert, G.F.2
  • 9
    • 0034074402 scopus 로고    scopus 로고
    • QT-interval prolongation by non-cardiac drugs: Lessons to be learned from recent experience
    • De Ponti F., Poluzzi E., Montanaro N. (2000) QT-interval prolongation by non-cardiac drugs: lessons to be learned from recent experience. Eur J Clin Pharmacol 56 : 1 18.
    • (2000) Eur J Clin Pharmacol , vol.56 , pp. 1-18
    • De Ponti, F.1    Poluzzi, E.2    Montanaro, N.3
  • 10
    • 58149084868 scopus 로고    scopus 로고
    • QSAR and pharmacophores for drugs involved in hERG blockade
    • In: Vaz, R.J., Klabunde, T., editors. Weinheim: Wiley-VCH. p.
    • Recanatini M., Cavalli A. (2008) QSAR and pharmacophores for drugs involved in hERG blockade. In : Vaz R.J., Klabunde T., editors. Antitargets: Prediction and Prevention of Drug Side Effects. Weinheim : Wiley-VCH p. 109 123.
    • (2008) Antitargets: Prediction and Prevention of Drug Side Effects. , pp. 109-123
    • Recanatini, M.1    Cavalli, A.2
  • 11
    • 0027025790 scopus 로고
    • An overview of class III electrophysiological agents: A new generation of antiarrhythmic therapy
    • In: Ellis, G.P., Luscombe, D.K., editors. Amsterdam: Elsevier. p. 108.
    • Morgan T.K., Sullivan M.E. (1992) An overview of class III electrophysiological agents: a new generation of antiarrhythmic therapy. In : Ellis G.P., Luscombe D.K., editors. Progress in Medicinal Chemistry 29. Amsterdam : Elsevier p. 65 108.
    • (1992) Progress in Medicinal Chemistry , vol.29 , pp. 65
    • Morgan, T.K.1    Sullivan, M.E.2
  • 13
    • 0036229805 scopus 로고    scopus 로고
    • Three-dimensional quantitative structure-activity relationship for inhibition of human ether-a-go-go related gene potassium channel
    • Ekins S., Crumb W.J., Sarazan R.D., Wikel J.H., Wrighton S.A. (2002) Three-dimensional quantitative structure-activity relationship for inhibition of human ether-a-go-go related gene potassium channel. J Pharmacol Exp Ther 301 : 427 434.
    • (2002) J Pharmacol Exp Ther , vol.301 , pp. 427-434
    • Ekins, S.1    Crumb, W.J.2    Sarazan, R.D.3    Wikel, J.H.4    Wrighton, S.A.5
  • 14
    • 33750998518 scopus 로고    scopus 로고
    • Common pharmacophores for uncharged human ether-a-go-go related gene (hERG) blockers
    • Aronov A.M. (2006) Common pharmacophores for uncharged human ether-a-go-go related gene (hERG) blockers. J Med Chem 49 : 6917 6921.
    • (2006) J Med Chem , vol.49 , pp. 6917-6921
    • Aronov, A.M.1
  • 15
    • 2442700335 scopus 로고    scopus 로고
    • Prediction of torsade-causing potential of drugs by support vector machine approach
    • Yap C.W., Cai C.Z., Xue Y., Chen Y.Z. (2004) Prediction of torsade-causing potential of drugs by support vector machine approach. Toxicol Sci 79 : 170 177.
    • (2004) Toxicol Sci , vol.79 , pp. 170-177
    • Yap, C.W.1    Cai, C.Z.2    Xue, Y.3    Chen, Y.Z.4
  • 16
    • 19544393375 scopus 로고    scopus 로고
    • A discriminant model constructed by the support vector machine method for hERG potassium channel inhibitors
    • Tobita M., Nishikawa T., Nagashima R. (2005) A discriminant model constructed by the support vector machine method for hERG potassium channel inhibitors. Bioorg Med Chem Lett 15 : 2886 2890.
    • (2005) Bioorg Med Chem Lett , vol.15 , pp. 2886-2890
    • Tobita, M.1    Nishikawa, T.2    Nagashima, R.3
  • 17
    • 39749088786 scopus 로고    scopus 로고
    • HERG classification model based on a combination of support vector machine method and GRIND descriptors
    • Li Q., Jorgensen F.S., Oprea T., Brunak S., Taboureau O. (2007) hERG classification model based on a combination of support vector machine method and GRIND descriptors. Mol Pharm 5 : 117 127.
    • (2007) Mol Pharm , vol.5 , pp. 117-127
    • Li, Q.1    Jorgensen, F.S.2    Oprea, T.3    Brunak, S.4    Taboureau, O.5
  • 19
    • 0036904104 scopus 로고    scopus 로고
    • A virtual screening method for prediction of the hERG potassium channel liability of compound libraries
    • Roche O., Trube G., Zuegge J., Pfimlin P., Alanine A., Schneider G. (2002) A virtual screening method for prediction of the hERG potassium channel liability of compound libraries. ChemBioChem 3 : 455 459.
    • (2002) ChemBioChem , vol.3 , pp. 455-459
    • Roche, O.1    Trube, G.2    Zuegge, J.3    Pfimlin, P.4    Alanine, A.5    Schneider, G.6
  • 20
    • 33747505086 scopus 로고    scopus 로고
    • Insights for human ether-a-go-go-related gene potassium channel inhibition using recursive partitioning and Kohonen and Sammon mapping techniques
    • Ekins S., Balakin K.V., Savchuk N., Ivanenkov Y. (2006) Insights for human ether-a-go-go-related gene potassium channel inhibition using recursive partitioning and Kohonen and Sammon mapping techniques. J Med Chem 49 : 5059 5071.
    • (2006) J Med Chem , vol.49 , pp. 5059-5071
    • Ekins, S.1    Balakin, K.V.2    Savchuk, N.3    Ivanenkov, Y.4
  • 21
    • 55249101966 scopus 로고    scopus 로고
    • Identifying hERG potassium channel inhibitors by machine learning methods
    • Wang M., Yang X.-G., Xue Y. (2008) Identifying hERG potassium channel inhibitors by machine learning methods. QSAR Comb Sci 8 : 1028 1035.
    • (2008) QSAR Comb Sci , vol.8 , pp. 1028-1035
    • Wang, M.1    Yang, X.-G.2    Xue, Y.3
  • 22
    • 33745147614 scopus 로고    scopus 로고
    • Determination of hERG channel blockers using a decision tree
    • Gepp M.M., Hutter M.C. (2006) Determination of hERG channel blockers using a decision tree. Bioorg Med Chem 14 : 5325 5332.
    • (2006) Bioorg Med Chem , vol.14 , pp. 5325-5332
    • Gepp, M.M.1    Hutter, M.C.2
  • 23
    • 33746275630 scopus 로고    scopus 로고
    • In silico classification of hERG channel blockers: A knowledge-based strategy
    • Dubus E., Ijjaali I., Petitet F., Michel A. (2006) In silico classification of hERG channel blockers: a knowledge-based strategy. ChemMedChem 1 : 622 630.
    • (2006) ChemMedChem , vol.1 , pp. 622-630
    • Dubus, E.1    Ijjaali, I.2    Petitet, F.3    Michel, A.4
  • 24
    • 33646487003 scopus 로고    scopus 로고
    • An accurate and interpretable Bayesian classification model for prediction of hERG liability
    • Sun H. (2006) An accurate and interpretable Bayesian classification model for prediction of hERG liability. ChemMedChem 1 : 315 322.
    • (2006) ChemMedChem , vol.1 , pp. 315-322
    • Sun, H.1
  • 25
    • 35248832636 scopus 로고    scopus 로고
    • Gaussian process: A method for automatic QSAR modeling of ADME properties
    • Obrezanova O., Csanyi G., Gola J.M.R., Segall M.D. (2007) Gaussian process: a method for automatic QSAR modeling of ADME properties. J Chem Inf Model 47 : 1847 1857.
    • (2007) J Chem Inf Model , vol.47 , pp. 1847-1857
    • Obrezanova, O.1    Csanyi, G.2    Gola, J.M.R.3    Segall, M.D.4
  • 26
    • 41649121041 scopus 로고    scopus 로고
    • A binary QSAR model for classification of hERG potassium channel blockers
    • Thai K.-M., Ecker G.F. (2008) A binary QSAR model for classification of hERG potassium channel blockers. Biorg Med Chem 16 : 4107 4119.
    • (2008) Biorg Med Chem , vol.16 , pp. 4107-4119
    • Thai, K.-M.1    Ecker, G.F.2
  • 27
    • 41649087920 scopus 로고    scopus 로고
    • Artificial immune system classification of drug-induced torsades de pointes with AIRS (Artificial Immune Recognition System)
    • Ivanciuc O. (2006) Artificial immune system classification of drug-induced torsades de pointes with AIRS (Artificial Immune Recognition System). Internet Electron J Mol Des 5 : 488 502.
    • (2006) Internet Electron J Mol des , vol.5 , pp. 488-502
    • Ivanciuc, O.1
  • 29
    • 0000892020 scopus 로고    scopus 로고
    • Clustering of large databases of compounds: Using the MDL "keys" as structural descriptors
    • McGregor G.B., Pallai P. (1997) Clustering of large databases of compounds: Using the MDL "keys" as structural descriptors. J Chem Inf Comput Sci 37 : 443 448.
    • (1997) J Chem Inf Comput Sci , vol.37 , pp. 443-448
    • McGregor, G.B.1    Pallai, P.2
  • 30
  • 32
    • 21244468757 scopus 로고    scopus 로고
    • Searching techniques for databases of two- and three-dimensional chemical structures
    • Willet P. (2005) Searching techniques for databases of two- and three-dimensional chemical structures. J Med Chem 48 : 4138 4199.
    • (2005) J Med Chem , vol.48 , pp. 4138-4199
    • Willet, P.1
  • 33
    • 0037314097 scopus 로고    scopus 로고
    • Matrix2png: A utility for visualizing matrix data
    • Pavlidis P., Noble W.S. (2003) Matrix2png: a utility for visualizing matrix data. Bioinformatics 19 : 295 296.
    • (2003) Bioinformatics , vol.19 , pp. 295-296
    • Pavlidis, P.1    Noble, W.S.2
  • 34
    • 0342645323 scopus 로고    scopus 로고
    • Use of structure-activity data to compare structure-based clustering methods and descriptors for use in compound selection
    • Brown R.D., Martin Y.C. (1996) Use of structure-activity data to compare structure-based clustering methods and descriptors for use in compound selection. J Chem Inf Comput Sci 36 : 572 584.
    • (1996) J Chem Inf Comput Sci , vol.36 , pp. 572-584
    • Brown, R.D.1    Martin, Y.C.2
  • 35
    • 84944178665 scopus 로고
    • Hierarchical grouping to optimize an objective function
    • Ward J.H. (1963) Hierarchical grouping to optimize an objective function. J Am Stat Assoc 58 : 236 244.
    • (1963) J Am Stat Assoc , vol.58 , pp. 236-244
    • Ward, J.H.1
  • 37
    • 0034740222 scopus 로고    scopus 로고
    • Drug design by machine learning: Support vector machines for pharmaceutical data analysis
    • Burbridge R., Trotter M., Holden S., Buxton B. (2001) Drug design by machine learning: support vector machines for pharmaceutical data analysis. Comput Chem 26 : 5 14.
    • (2001) Comput Chem , vol.26 , pp. 5-14
    • Burbridge, R.1    Trotter, M.2    Holden, S.3    Buxton, B.4
  • 40
    • 0035914576 scopus 로고    scopus 로고
    • Comparison of different methods for variable selection
    • Xu L., Zhang W.-J. (2001) Comparison of different methods for variable selection. Anal Chim Acta 446 : 475 481.
    • (2001) Anal Chim Acta , vol.446 , pp. 475-481
    • Xu, L.1    Zhang, W.-J.2
  • 41
    • 44449107147 scopus 로고    scopus 로고
    • Support-vector-machine-based ranking significantly improves the effectiveness of similarity searching using 2D fingerprints and multiple reference compounds
    • Geppert H., Horváth T., Gärtner T., Wrobel S., Bajorath J. (2008) Support-vector-machine-based ranking significantly improves the effectiveness of similarity searching using 2D fingerprints and multiple reference compounds. J Chem Inf Model 48 : 742 746.
    • (2008) J Chem Inf Model , vol.48 , pp. 742-746
    • Geppert, H.1    Horváth, T.2    Gärtner, T.3    Wrobel, S.4    Bajorath, J.5


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.