메뉴 건너뛰기




Volumn 42, Issue 4, 2009, Pages 654-666

A neural network-based biomarker association information extraction approach for cancer classification

Author keywords

Biomarker Association Network; Cancer classification; High throughput technology; Neural network

Indexed keywords

ASSOCIATION PATTERNS; CANCER CLASSIFICATION; CLASSIFICATION APPROACH; CONVENTIONAL CLASSIFICATION METHODS; DATA SETS; ENERGY FUNCTIONS; EXPRESSION LEVELS; HIGH-THROUGHPUT DATA; HIGH-THROUGHPUT TECHNOLOGY; INFORMATION EXTRACTION;

EID: 67649407372     PISSN: 15320464     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.jbi.2008.12.010     Document Type: Article
Times cited : (34)

References (72)
  • 1
    • 0023043847 scopus 로고
    • A turning point in cancer research: sequencing the human genome
    • Dulbecco R. A turning point in cancer research: sequencing the human genome. Science 231 4742 (1986) 1055-1056
    • (1986) Science , vol.231 , Issue.4742 , pp. 1055-1056
    • Dulbecco, R.1
  • 2
    • 0028806048 scopus 로고
    • Quantitative monitoring of gene expression patterns with a complementary microarray
    • Schena M., Shalon D., Davis R.W., and Brown P.O. Quantitative monitoring of gene expression patterns with a complementary microarray. Science 270 (1995) 467-470
    • (1995) Science , vol.270 , pp. 467-470
    • Schena, M.1    Shalon, D.2    Davis, R.W.3    Brown, P.O.4
  • 3
    • 0033569406 scopus 로고    scopus 로고
    • Molecular classification of cancer: class discovery and class prediction by gene expression monitoring
    • Golub T.R., Slonim D.K., Tamayo P., Huard C., Gaasenbeek M., Mesirov J.P., et al. Molecular classification of cancer: class discovery and class prediction by gene expression monitoring. Science 286 (1999) 531-537
    • (1999) Science , vol.286 , pp. 531-537
    • Golub, T.R.1    Slonim, D.K.2    Tamayo, P.3    Huard, C.4    Gaasenbeek, M.5    Mesirov, J.P.6
  • 4
    • 0043192901 scopus 로고    scopus 로고
    • A gene expression-based method to diagnose clinically distinct subgroups of diffuse large B cell lymphoma
    • Wright G., Tan B., Rosenwald A., Hurt E.H., Wiestner A., and Staudt L.M. A gene expression-based method to diagnose clinically distinct subgroups of diffuse large B cell lymphoma. PNAS 100 17 (2003) 9991-9996
    • (2003) PNAS , vol.100 , Issue.17 , pp. 9991-9996
    • Wright, G.1    Tan, B.2    Rosenwald, A.3    Hurt, E.H.4    Wiestner, A.5    Staudt, L.M.6
  • 5
    • 33748503420 scopus 로고    scopus 로고
    • Evaluation of dna microarray results with quantitative gene expression platforms
    • doi:10.1038/nbt1236, ISSN: 1087-0156
    • Canales RD, Luo Y, Willey JC, Austermiller B, Barbacioru CC, Boysen C, et al. Evaluation of dna microarray results with quantitative gene expression platforms. Nat Biotechnol 2006;24(9):1115-22. doi:10.1038/nbt1236, ISSN: 1087-0156.
    • (2006) Nat Biotechnol , vol.24 , Issue.9 , pp. 1115-1122
    • Canales, R.D.1    Luo, Y.2    Willey, J.C.3    Austermiller, B.4    Barbacioru, C.C.5    Boysen, C.6
  • 7
    • 33747865502 scopus 로고    scopus 로고
    • Independent component analysis-based penalized discriminant method for tumor classification using gene expression data
    • Huang D.-S., and Zheng C.-H. Independent component analysis-based penalized discriminant method for tumor classification using gene expression data. Bioinformatics 22 15 (2006) 1855-1862
    • (2006) Bioinformatics , vol.22 , Issue.15 , pp. 1855-1862
    • Huang, D.-S.1    Zheng, C.-H.2
  • 8
    • 34249717863 scopus 로고    scopus 로고
    • Disease-specific genomic analysis: identifying the signature of pathologic biology
    • Nicolau M., Tibshirani R., B?rresen-Dale A.-L., and Jeffrey S.S. Disease-specific genomic analysis: identifying the signature of pathologic biology. Bioinformatics 23 8 (2007) 957-965
    • (2007) Bioinformatics , vol.23 , Issue.8 , pp. 957-965
    • Nicolau, M.1    Tibshirani, R.2    Børresen-Dale, A.-L.3    Jeffrey, S.S.4
  • 9
    • 0033636139 scopus 로고    scopus 로고
    • Support vector machine classification and validation of cancer tissue samples using microarray expression data
    • Furey T.S., Cristianini N., Duffy N., Bednarski D., Schummer M., and Haussler D. Support vector machine classification and validation of cancer tissue samples using microarray expression data. Bioinformatics 16 10 (2000) 906-914
    • (2000) Bioinformatics , vol.16 , Issue.10 , pp. 906-914
    • Furey, T.S.1    Cristianini, N.2    Duffy, N.3    Bednarski, D.4    Schummer, M.5    Haussler, D.6
  • 10
    • 0034954414 scopus 로고    scopus 로고
    • Classification and diagnostic prediction of cancers using gene expression profiling and artificial neural networks
    • 673-670
    • Khan J., Wei J.S., Ringner M., Saal L.H., Landanyi M., Westermann F., et al. Classification and diagnostic prediction of cancers using gene expression profiling and artificial neural networks. Nat Med 7 (2001) 673-670
    • (2001) Nat Med , vol.7
    • Khan, J.1    Wei, J.S.2    Ringner, M.3    Saal, L.H.4    Landanyi, M.5    Westermann, F.6
  • 11
    • 0036166439 scopus 로고    scopus 로고
    • Tumor classification by partial least squares using microarray gene expression data
    • Nguyen D.V., and Rocke D.M. Tumor classification by partial least squares using microarray gene expression data. Bioinformatics 18 1 (2002) 39-50
    • (2002) Bioinformatics , vol.18 , Issue.1 , pp. 39-50
    • Nguyen, D.V.1    Rocke, D.M.2
  • 13
    • 0037076272 scopus 로고    scopus 로고
    • Diagnosis of multiple cancer types by shrunken centroids of gene expression
    • Tibshirani R., Hastie T., Narasimhan B., and Chu G. Diagnosis of multiple cancer types by shrunken centroids of gene expression. PNAS 99 10 (2002) 6567-6572
    • (2002) PNAS , vol.99 , Issue.10 , pp. 6567-6572
    • Tibshirani, R.1    Hastie, T.2    Narasimhan, B.3    Chu, G.4
  • 14
    • 10244252786 scopus 로고    scopus 로고
    • Systematic benchmarking of microarray data classification: assessing the role of non-linearity and dimensionality reduction
    • Pochet N., Smet F.D., Suykens J.A., and Moor B.D. Systematic benchmarking of microarray data classification: assessing the role of non-linearity and dimensionality reduction. Bioinformatics 20 (2004) 3185-3195
    • (2004) Bioinformatics , vol.20 , pp. 3185-3195
    • Pochet, N.1    Smet, F.D.2    Suykens, J.A.3    Moor, B.D.4
  • 15
    • 16344365619 scopus 로고    scopus 로고
    • Classification using partial least squares with penalized logistic regression
    • Fort G., and Lambert-Lacroix S. Classification using partial least squares with penalized logistic regression. Bioinformatics 21 7 (2005) 1104-1111
    • (2005) Bioinformatics , vol.21 , Issue.7 , pp. 1104-1111
    • Fort, G.1    Lambert-Lacroix, S.2
  • 16
    • 34548125448 scopus 로고    scopus 로고
    • Logistic regression for disease classification using microarray data: model selection in a large p and small n case
    • Liao J.G., and Chin K.-V. Logistic regression for disease classification using microarray data: model selection in a large p and small n case. Bioinformatics 23 15 (2007) 1945-1951
    • (2007) Bioinformatics , vol.23 , Issue.15 , pp. 1945-1951
    • Liao, J.G.1    Chin, K.-V.2
  • 17
    • 32144450423 scopus 로고    scopus 로고
    • Classification of microarray data with factor mixture models
    • Martella F. Classification of microarray data with factor mixture models. Bioinformatics 22 2 (2006) 202-208
    • (2006) Bioinformatics , vol.22 , Issue.2 , pp. 202-208
    • Martella, F.1
  • 18
    • 19044399684 scopus 로고    scopus 로고
    • and prediction of outcome in pediatric acute lymphoblastic leukemia by gene expression profiling
    • Yeoh E.-J., Ross M.E., Shurtleff S.A., Williams W.K., Patel D., Mahfouz R., et al. and prediction of outcome in pediatric acute lymphoblastic leukemia by gene expression profiling. Cancer Cell 1 2 (2002) 133-143
    • (2002) Cancer Cell , vol.1 , Issue.2 , pp. 133-143
    • Yeoh, E.-J.1    Ross, M.E.2    Shurtleff, S.A.3    Williams, W.K.4    Patel, D.5    Mahfouz, R.6
  • 19
    • 0142192759 scopus 로고    scopus 로고
    • Neural network analysis of lymphoma microarray data: prognosis and diagnosis near-perfect
    • O'Neill M., and Song L. Neural network analysis of lymphoma microarray data: prognosis and diagnosis near-perfect. BMC Bioinformatics 4 1 (2003) 13
    • (2003) BMC Bioinformatics , vol.4 , Issue.1 , pp. 13
    • O'Neill, M.1    Song, L.2
  • 20
    • 20344374626 scopus 로고    scopus 로고
    • Optimisation of radial basis function classifiers using simulated annealing algorithm for cancer classification
    • Wang H.-Q., Huang D.S., and Wang B. Optimisation of radial basis function classifiers using simulated annealing algorithm for cancer classification. Electronics Lett 41 11 (2005) 630-632
    • (2005) Electronics Lett , vol.41 , Issue.11 , pp. 630-632
    • Wang, H.-Q.1    Huang, D.S.2    Wang, B.3
  • 21
    • 0032863227 scopus 로고    scopus 로고
    • Large-scale gene expression data analysis: a new challenge to computational biologists
    • Zhang M.Q. Large-scale gene expression data analysis: a new challenge to computational biologists. Genome Res 9 8 (1999) 681-688
    • (1999) Genome Res , vol.9 , Issue.8 , pp. 681-688
    • Zhang, M.Q.1
  • 22
    • 0036899286 scopus 로고    scopus 로고
    • From patterns to pathways: gene expression data analysis comes of age
    • Slonim D.K. From patterns to pathways: gene expression data analysis comes of age. Nat Genet Suppl 32 (2002) 502-508
    • (2002) Nat Genet Suppl , vol.32 , pp. 502-508
    • Slonim, D.K.1
  • 23
    • 34249753618 scopus 로고
    • Support-vector networks
    • Cortes C., and Vapnik V. Support-vector networks. Mach Learn 20 3 (1995) 273-297
    • (1995) Mach Learn , vol.20 , Issue.3 , pp. 273-297
    • Cortes, C.1    Vapnik, V.2
  • 24
    • 0031272926 scopus 로고    scopus 로고
    • Comparing support vector machines with Gaussian kernals to radial basis function classifiers
    • Scholkopf B., Sung K.-K., Burges C.J.C., Girosi F., Niyogi P., Poggio T., et al. Comparing support vector machines with Gaussian kernals to radial basis function classifiers. IEEE Trans Signal Process 45 11 (1997) 2758-2765
    • (1997) IEEE Trans Signal Process , vol.45 , Issue.11 , pp. 2758-2765
    • Scholkopf, B.1    Sung, K.-K.2    Burges, C.J.C.3    Girosi, F.4    Niyogi, P.5    Poggio, T.6
  • 26
    • 67649402076 scopus 로고    scopus 로고
    • SVM-support vector machine. Department of Computer Science
    • Available from:, online
    • Joachims T. SVM-support vector machine. Department of Computer Science. NY: Cornell University of Ithaca; 2003. Available from: http://svmlight.joachims.org/ [online].
    • (2003) NY: Cornell University of Ithaca
    • Joachims, T.1
  • 27
    • 0034602774 scopus 로고    scopus 로고
    • Knowledge-based analysis of microarray gene expression data by using support vector machines
    • Brown M.P.S., Grundy W.N., Lin D., Cristianini N., Sugnet C.W., Furey T.S., et al. Knowledge-based analysis of microarray gene expression data by using support vector machines. PNAS 97 1 (2000) 262-267
    • (2000) PNAS , vol.97 , Issue.1 , pp. 262-267
    • Brown, M.P.S.1    Grundy, W.N.2    Lin, D.3    Cristianini, N.4    Sugnet, C.W.5    Furey, T.S.6
  • 28
    • 0038729565 scopus 로고    scopus 로고
    • Classification of multiple cancer types by multicategory support vector machines using gene expression data
    • Lee Y., and Lee C.K. Classification of multiple cancer types by multicategory support vector machines using gene expression data. Bioinformatics 19 9 (2003) 1132-1139
    • (2003) Bioinformatics , vol.19 , Issue.9 , pp. 1132-1139
    • Lee, Y.1    Lee, C.K.2
  • 29
    • 0742307309 scopus 로고    scopus 로고
    • Feature subset selection for support vector machines through discriminative function pruning analysis
    • Mao KZ. Feature subset selection for support vector machines through discriminative function pruning analysis. IEEE Trans Systems Man Cybern B Cybern 2004;34:60-7.
    • (2004) IEEE Trans Systems Man Cybern B Cybern , vol.34 , pp. 60-67
    • Mao, K.Z.1
  • 30
    • 24944582403 scopus 로고    scopus 로고
    • Expression profiles of osteosarcoma that can predict response to chemotherapy
    • Man T.-K., Chintagumpala M., Visvanathan J., Shen J., Perlaky L., Hicks J., et al. Expression profiles of osteosarcoma that can predict response to chemotherapy. Cancer Res 65 18 (2005) 8142-8150
    • (2005) Cancer Res , vol.65 , Issue.18 , pp. 8142-8150
    • Man, T.-K.1    Chintagumpala, M.2    Visvanathan, J.3    Shen, J.4    Perlaky, L.5    Hicks, J.6
  • 31
    • 1842559888 scopus 로고    scopus 로고
    • Optimization models for cancer classification: extracting gene interaction information from microarray expression data
    • Antonov A.V., Tetko I.V., Mader M.T., Budczies J., and Mewes H.W. Optimization models for cancer classification: extracting gene interaction information from microarray expression data. Bioinformatics 20 5 (2004) 644-652
    • (2004) Bioinformatics , vol.20 , Issue.5 , pp. 644-652
    • Antonov, A.V.1    Tetko, I.V.2    Mader, M.T.3    Budczies, J.4    Mewes, H.W.5
  • 32
    • 4043059734 scopus 로고    scopus 로고
    • A Bayesian network classification methodology for gene expression data
    • Helman P., Veroff R., Atlas S.R., and Willman C. A Bayesian network classification methodology for gene expression data. J Comput Biol 11 4 (2004) 581-615
    • (2004) J Comput Biol , vol.11 , Issue.4 , pp. 581-615
    • Helman, P.1    Veroff, R.2    Atlas, S.R.3    Willman, C.4
  • 33
    • 85032752204 scopus 로고    scopus 로고
    • Genomic processing for cancer classification and prediction - abroad review of the recent advances in model-based genomoric and proteomic signal processing for cancer detection
    • Qiu P., Wang Z.J., and Liu K.J.R. Genomic processing for cancer classification and prediction - abroad review of the recent advances in model-based genomoric and proteomic signal processing for cancer detection. IEEE Trans Signal Process Mag 24 1 (2007) 100-110
    • (2007) IEEE Trans Signal Process Mag , vol.24 , Issue.1 , pp. 100-110
    • Qiu, P.1    Wang, Z.J.2    Liu, K.J.R.3
  • 34
    • 25144474549 scopus 로고    scopus 로고
    • Ensemble dependence model for classification and prediction of cancer and normal gene expression data
    • Qiu P., Wang Z.J., and Liu K.J.R. Ensemble dependence model for classification and prediction of cancer and normal gene expression data. Bioinformatics 21 14 (2005) 3114-3121
    • (2005) Bioinformatics , vol.21 , Issue.14 , pp. 3114-3121
    • Qiu, P.1    Wang, Z.J.2    Liu, K.J.R.3
  • 35
    • 33748554850 scopus 로고    scopus 로고
    • Topology-based cancer classification and related pathway mining using microarray data
    • Liu C.-C., Chen W.-S.E., Lin C.-C., Liu H.-C., Chen H.-Y., Yang P.-C., et al. Topology-based cancer classification and related pathway mining using microarray data. Nucleic Acids Res 34 14 (2006) 4069-4080
    • (2006) Nucleic Acids Res , vol.34 , Issue.14 , pp. 4069-4080
    • Liu, C.-C.1    Chen, W.-S.E.2    Lin, C.-C.3    Liu, H.-C.4    Chen, H.-Y.5    Yang, P.-C.6
  • 36
    • 44449110580 scopus 로고    scopus 로고
    • Tlsty T. Cancer: whispering sweet somethings. Nature 2008;453(7195):604-5. doi:10.1038/453604a, ISSN: 0028-0836.
    • Tlsty T. Cancer: whispering sweet somethings. Nature 2008;453(7195):604-5. doi:10.1038/453604a, ISSN: 0028-0836.
  • 37
    • 27144509163 scopus 로고    scopus 로고
    • Calvano SE, Xiao W, Richards DR, Felciano RM, Baker HV, Cho RJ, et al. I. Host response to, a network-based analysis of systemic inflammation in humans. Nature 2005;437(7061):1032-7. doi:10.1038/nature03985, ISSN: 0028-0836.
    • Calvano SE, Xiao W, Richards DR, Felciano RM, Baker HV, Cho RJ, et al. I. Host response to, a network-based analysis of systemic inflammation in humans. Nature 2005;437(7061):1032-7. doi:10.1038/nature03985, ISSN: 0028-0836.
  • 38
    • 20044388557 scopus 로고    scopus 로고
    • From signatures to models: understanding cancer using microarrays
    • Segal E., Friedman N., Kaminski N., Regev A., and Koller D. From signatures to models: understanding cancer using microarrays. Nat Genet 37 (2005) S38-S45
    • (2005) Nat Genet , vol.37
    • Segal, E.1    Friedman, N.2    Kaminski, N.3    Regev, A.4    Koller, D.5
  • 39
    • 0033707946 scopus 로고    scopus 로고
    • Using Bayesian networks to analyze expression data
    • Friedman N., Linial M., Nachman I., and Pe'er D. Using Bayesian networks to analyze expression data. J Comput Biol 7 3 (2000) 601-620
    • (2000) J Comput Biol , vol.7 , Issue.3 , pp. 601-620
    • Friedman, N.1    Linial, M.2    Nachman, I.3    Pe'er, D.4
  • 40
    • 0345983657 scopus 로고    scopus 로고
    • From boolean to probabilistic boolean networks as models of genetic regulatory networks
    • Shmulevich I., Edward R D., and Zhang W. From boolean to probabilistic boolean networks as models of genetic regulatory networks. Proc IEEE 90 11 (2002) 1778-1792
    • (2002) Proc IEEE , vol.90 , Issue.11 , pp. 1778-1792
    • Shmulevich, I.1    Edward R, D.2    Zhang, W.3
  • 41
    • 12744261506 scopus 로고    scopus 로고
    • A new dynamic Bayesian network (dbn) approach for identifying gene regulatory networks from time course microarray data
    • Zou M., and Conzen S.D. A new dynamic Bayesian network (dbn) approach for identifying gene regulatory networks from time course microarray data. Bioinformatics 21 1 (2005) 71-79
    • (2005) Bioinformatics , vol.21 , Issue.1 , pp. 71-79
    • Zou, M.1    Conzen, S.D.2
  • 44
    • 33846706710 scopus 로고    scopus 로고
    • Proteinchip array profiling for identification of disease- and chemotherapy-associated biomarkers of nasopharyngeal carcinoma
    • Cho W.C.S., Yip T.T.C., Ngan R.K.C., Yip T.-T., Podust V.N., Yip C., et al. Proteinchip array profiling for identification of disease- and chemotherapy-associated biomarkers of nasopharyngeal carcinoma. Clin Chem 52 3 (2007) 241-250
    • (2007) Clin Chem , vol.52 , Issue.3 , pp. 241-250
    • Cho, W.C.S.1    Yip, T.T.C.2    Ngan, R.K.C.3    Yip, T.-T.4    Podust, V.N.5    Yip, C.6
  • 45
    • 0033536012 scopus 로고    scopus 로고
    • Broad patterns of gene expression revealed by clustering analysis of tumor and normal colon tissues probed by oligonucleotide arrays
    • Alon U., Barkai N., Notterman D.A., Gish K., Ybarra S., Mack D., et al. Broad patterns of gene expression revealed by clustering analysis of tumor and normal colon tissues probed by oligonucleotide arrays. Proc Natl Acad Sci USA 96 (1999) 6745-6750
    • (1999) Proc Natl Acad Sci USA , vol.96 , pp. 6745-6750
    • Alon, U.1    Barkai, N.2    Notterman, D.A.3    Gish, K.4    Ybarra, S.5    Mack, D.6
  • 46
    • 34547844096 scopus 로고    scopus 로고
    • Comparing association network algorithms for reverse engineering of large-scale gene regulatory networks: synthetic versus real data
    • Soranzo N., Bianconi G., and Altafini C. Comparing association network algorithms for reverse engineering of large-scale gene regulatory networks: synthetic versus real data. Bioinformatics 23 13 (2007) 1640-1647
    • (2007) Bioinformatics , vol.23 , Issue.13 , pp. 1640-1647
    • Soranzo, N.1    Bianconi, G.2    Altafini, C.3
  • 47
    • 0037941585 scopus 로고    scopus 로고
    • Module networks: identifying regulatory modules and their condition-specific regulators from gene expression data
    • Segal E., Shapira M., Regev A., Pe'er D., Botstein D., Koller D., et al. Module networks: identifying regulatory modules and their condition-specific regulators from gene expression data. Nat Genet 34 2 (2003) 166-176
    • (2003) Nat Genet , vol.34 , Issue.2 , pp. 166-176
    • Segal, E.1    Shapira, M.2    Regev, A.3    Pe'er, D.4    Botstein, D.5    Koller, D.6
  • 48
    • 4043181214 scopus 로고    scopus 로고
    • Vogelstein B, Kinzler KW. Cancer genes and the pathways they control. Nat Med 2004;10(8):789-99. doi:10.1038/nm1087, ISSN: 1078-8956.
    • Vogelstein B, Kinzler KW. Cancer genes and the pathways they control. Nat Med 2004;10(8):789-99. doi:10.1038/nm1087, ISSN: 1078-8956.
  • 49
    • 34547691339 scopus 로고    scopus 로고
    • Extracting gene regulation information for cancer classification
    • Wang H.-Q., Wong H.-S., Huang D.-S., and Shu J. Extracting gene regulation information for cancer classification. Pattern Recognit 40 12 (2007) 3379-3392
    • (2007) Pattern Recognit , vol.40 , Issue.12 , pp. 3379-3392
    • Wang, H.-Q.1    Wong, H.-S.2    Huang, D.-S.3    Shu, J.4
  • 53
    • 5044245707 scopus 로고    scopus 로고
    • Gene co-expression network topology provides a framework for molecular characterization of cellular state
    • Carter S.L., Brechbuhler C.M., Griffin M., and Bond A.T. Gene co-expression network topology provides a framework for molecular characterization of cellular state. Bioinformatics 20 14 (2004) 2242-2250
    • (2004) Bioinformatics , vol.20 , Issue.14 , pp. 2242-2250
    • Carter, S.L.1    Brechbuhler, C.M.2    Griffin, M.3    Bond, A.T.4
  • 55
    • 18444411317 scopus 로고    scopus 로고
    • Reduced effect of gemtuzumab ozogamicin (cma-676) on p-glycoprotein and/or cd34-positive leukemia cells and its restoration by multidrug resistance modifiers
    • Matsui H., Takeshita A., Naito K., Shinjo K., Shigeno K., Maekawa M., et al. Reduced effect of gemtuzumab ozogamicin (cma-676) on p-glycoprotein and/or cd34-positive leukemia cells and its restoration by multidrug resistance modifiers. Leukemia 16 5 (2002) 813-819
    • (2002) Leukemia , vol.16 , Issue.5 , pp. 813-819
    • Matsui, H.1    Takeshita, A.2    Naito, K.3    Shinjo, K.4    Shigeno, K.5    Maekawa, M.6
  • 57
    • 36048978462 scopus 로고    scopus 로고
    • Selecting differentially expressed genes using minimum probability of classification error
    • Pritha M., and Kaushik M. Selecting differentially expressed genes using minimum probability of classification error. J Biomed Inform 40 6 (2007) 775-786, 132188
    • (2007) J Biomed Inform , vol.40 , Issue.6
    • Pritha, M.1    Kaushik, M.2
  • 58
    • 7044286462 scopus 로고    scopus 로고
    • Nonlinear probit gene selection and wavelet based feature selection
    • Zhou X., Wang X., and Dougherty E.R. Nonlinear probit gene selection and wavelet based feature selection. J Biol Syst 12 No. 3 (2004) 371-386
    • (2004) J Biol Syst , vol.12 , Issue.3 , pp. 371-386
    • Zhou, X.1    Wang, X.2    Dougherty, E.R.3
  • 59
    • 33845417885 scopus 로고    scopus 로고
    • The cancer epigenome - components and functional correlates
    • Ting A.H., McGarvey K.M., and Baylin S.B. The cancer epigenome - components and functional correlates. Genes Dev 20 23 (2006) 3215-3231
    • (2006) Genes Dev , vol.20 , Issue.23 , pp. 3215-3231
    • Ting, A.H.1    McGarvey, K.M.2    Baylin, S.B.3
  • 60
    • 0020586663 scopus 로고
    • Thymic hormone containing cells. iii. Evidence for a feed-back regulation of the secretion of the serum thymic factor (fts) by thymic epithelial cells
    • Savino W., Dardenne M., and Bach J.F. Thymic hormone containing cells. iii. Evidence for a feed-back regulation of the secretion of the serum thymic factor (fts) by thymic epithelial cells. Clin Exp Immunol 52 1 (1983) 7-12
    • (1983) Clin Exp Immunol , vol.52 , Issue.1 , pp. 7-12
    • Savino, W.1    Dardenne, M.2    Bach, J.F.3
  • 61
    • 0842309206 scopus 로고    scopus 로고
    • Inferring gene networks from time series microarray data using dynamic Bayesian networks
    • Kim S., Imoto S., and Miyano S. Inferring gene networks from time series microarray data using dynamic Bayesian networks. Brief Bioinform 4 3 (2003) 228-235
    • (2003) Brief Bioinform , vol.4 , Issue.3 , pp. 228-235
    • Kim, S.1    Imoto, S.2    Miyano, S.3
  • 62
  • 63
    • 33748433929 scopus 로고    scopus 로고
    • Feature selection in independent component subspace for microarray data classification
    • Zheng C.-H., Huang D.-S., and Shang L. Feature selection in independent component subspace for microarray data classification. Neurocomputing 69 16-18 (2006) 2407-2410
    • (2006) Neurocomputing , vol.69 , Issue.16-18 , pp. 2407-2410
    • Zheng, C.-H.1    Huang, D.-S.2    Shang, L.3
  • 64
    • 85030413794 scopus 로고    scopus 로고
    • Development of two-stage SVM-rfe gene selection strategy for microarray expression data analysis
    • 1299028
    • Tang Y., Zhang Y.-Q., and Huang Z. Development of two-stage SVM-rfe gene selection strategy for microarray expression data analysis. IEEE/ACM Trans Comput Biol Bioinform 4 3 (2007) 365-381 1299028
    • (2007) IEEE/ACM Trans Comput Biol Bioinform , vol.4 , Issue.3 , pp. 365-381
    • Tang, Y.1    Zhang, Y.-Q.2    Huang, Z.3
  • 66
    • 0035826360 scopus 로고    scopus 로고
    • Identifying marker genes in transcription profiling data using a mixture of feature relevance experts
    • Chow M.L., Moler E.J., and Mian I.S. Identifying marker genes in transcription profiling data using a mixture of feature relevance experts. Physiol Genomics 5 (2001) 99-111
    • (2001) Physiol Genomics , vol.5 , pp. 99-111
    • Chow, M.L.1    Moler, E.J.2    Mian, I.S.3
  • 67
    • 76849096874 scopus 로고    scopus 로고
    • A multiple-filter-multiple-wrapper approach to gene selection and microarray data classification
    • IEEE computer Society Digital Library. IEEE Computer Society. Available from
    • Leung Y, Hung Y. A multiple-filter-multiple-wrapper approach to gene selection and microarray data classification. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 2008. IEEE computer Society Digital Library. IEEE Computer Society. Available from: http://doi.ieeecomputersociety.org/10.1109/TCBB.2008.46.
    • (2008) IEEE/ACM Transactions on Computational Biology and Bioinformatics
    • Leung, Y.1    Hung, Y.2
  • 68
    • 25444528240 scopus 로고    scopus 로고
    • An entropy-based gene selection method for cancer classification using microarray data
    • Liu X., Krishnan A., and Mondry A. An entropy-based gene selection method for cancer classification using microarray data. BMC Bioinformatics 6 1 (2005) 76
    • (2005) BMC Bioinformatics , vol.6 , Issue.1 , pp. 76
    • Liu, X.1    Krishnan, A.2    Mondry, A.3
  • 69
    • 41149138911 scopus 로고    scopus 로고
    • The ant colony algorithm for feature selection in high-dimension gene expression data for disease classification
    • Robbins K.R., Zhang W., Bertrand J.K., and Rekaya R. The ant colony algorithm for feature selection in high-dimension gene expression data for disease classification. Math Med Biol 24 4 (2007) 413-426
    • (2007) Math Med Biol , vol.24 , Issue.4 , pp. 413-426
    • Robbins, K.R.1    Zhang, W.2    Bertrand, J.K.3    Rekaya, R.4
  • 70
    • 47249140503 scopus 로고    scopus 로고
    • Dimension reduction with redundant gene elimination for tumor classification
    • Zeng X.-Q., Li G.-Z., Yang J., Yang M., and Wu G.-F. Dimension reduction with redundant gene elimination for tumor classification. BMC Bioinformatics 9 Suppl. 6 (2008) S8
    • (2008) BMC Bioinformatics , vol.9 , Issue.SUPPL. 6
    • Zeng, X.-Q.1    Li, G.-Z.2    Yang, J.3    Yang, M.4    Wu, G.-F.5
  • 71
    • 57749192475 scopus 로고    scopus 로고
    • Finding rule groups to classify high dimensional gene expression datasets
    • An J., and Chen Y.-P.P. Finding rule groups to classify high dimensional gene expression datasets. Comput Biol Chem 33 1 (2009) 108-113
    • (2009) Comput Biol Chem , vol.33 , Issue.1 , pp. 108-113
    • An, J.1    Chen, Y.-P.P.2
  • 72
    • 44449113335 scopus 로고    scopus 로고
    • Improving prediction accuracy of tumor classification by reusing genes discarded during gene selection
    • Yang J., Li G.-Z., Meng H.-H., Yang M., and Deng Y. Improving prediction accuracy of tumor classification by reusing genes discarded during gene selection. BMC Genomics 9 Suppl. 1 (2008) S3
    • (2008) BMC Genomics , vol.9 , Issue.SUPPL. 1
    • Yang, J.1    Li, G.-Z.2    Meng, H.-H.3    Yang, M.4    Deng, Y.5


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.