메뉴 건너뛰기




Volumn 21, Issue 7, 2005, Pages 1104-1111

Classification using partial least squares with penalized logistic regression

Author keywords

[No Author keywords available]

Indexed keywords

ACUTE GRANULOCYTIC LEUKEMIA; ACUTE LYMPHOBLASTIC LEUKEMIA; ANALYTIC METHOD; ARTICLE; CANCER GENETICS; CANCER RESEARCH; COLON CANCER; COMPUTER PROGRAM; CONTROLLED STUDY; DISCRIMINANT ANALYSIS; DNA MICROARRAY; GENE EXPRESSION; GENETIC ALGORITHM; HUMAN; HUMAN TISSUE; INTERMETHOD COMPARISON; LOGISTIC REGRESSION ANALYSIS; MATHEMATICAL COMPUTING; MAXIMUM LIKELIHOOD METHOD; PRIORITY JOURNAL; PROSTATE CANCER; STATISTICAL ANALYSIS; STATISTICAL SIGNIFICANCE;

EID: 16344365619     PISSN: 13674803     EISSN: 13674811     Source Type: Journal    
DOI: 10.1093/bioinformatics/bti114     Document Type: Article
Times cited : (141)

References (27)
  • 1
    • 0002662712 scopus 로고
    • On the existence of maximum likelihood estimates in logistic regression models
    • Albert,A. and Anderson,J. (1984) On the existence of maximum likelihood estimates in logistic regression models. Biometrika, 71, 1-10.
    • (1984) Biometrika , vol.71 , pp. 1-10
    • Albert, A.1    Anderson, J.2
  • 2
    • 0033536012 scopus 로고    scopus 로고
    • Broad patterns of gene expression revealed by clustering analysis of tumor and normal colon tissues probed by oligonucleotide arrays
    • Alon,U., Barkai,N., Notterman,D., Gish,K., Ybarra,S., Mack,D., and Levine,A. (1999) Broad patterns of gene expression revealed by clustering analysis of tumor and normal colon tissues probed by oligonucleotide arrays. Proc. Natl Acad. Sci. USA, 96, 6745-6750.
    • (1999) Proc. Natl. Acad. Sci. USA , vol.96 , pp. 6745-6750
    • Alon, U.1    Barkai, N.2    Notterman, D.3    Gish, K.4    Ybarra, S.5    Mack, D.6    Levine, A.7
  • 3
    • 0037461021 scopus 로고    scopus 로고
    • Effective dimension reduction methods for tumor classification using gene expression data
    • Antoniadis,A., Lambert-Lacroix,S. and Leblanc,F. (2003) Effective dimension reduction methods for tumor classification using gene expression data. Bioinformatics, 19(5), 563-570.
    • (2003) Bioinformatics , vol.19 , Issue.5 , pp. 563-570
    • Antoniadis, A.1    Lambert-Lacroix, S.2    Leblanc, F.3
  • 5
    • 10444235517 scopus 로고    scopus 로고
    • Classification using generalized partial least squares
    • Technical Report 5, Bioconductor Project Working Papers
    • Ding,B. and Gentleman,R. (2004) Classification using generalized partial least squares. Technical Report 5, Bioconductor Project Working Papers, http://www.bepress.com/bioconductor/paper5.
    • (2004)
    • Ding, B.1    Gentleman, R.2
  • 6
    • 0036489046 scopus 로고    scopus 로고
    • Comparison of discrimination methods for the classification of tumors using gene expression data
    • Dudoit,S., Fridlyand,J. and Speed,T. (2002) Comparison of discrimination methods for the classification of tumors using gene expression data. J. Amer. Stat. Assoc., 97, 77-87.
    • (2002) J. Amer. Stat. Assoc. , vol.97 , pp. 77-87
    • Dudoit, S.1    Fridlyand, J.2    Speed, T.3
  • 9
    • 84952149204 scopus 로고
    • A statistical view of some chemometrics regression tools, with discussion
    • Frank,I. and Friedman,J. (1993) A statistical view of some chemometrics regression tools, with discussion. Technometrics, 35(2), 109-148.
    • (1993) Technometrics , vol.35 , Issue.2 , pp. 109-148
    • Frank, I.1    Friedman, J.2
  • 10
    • 0033636139 scopus 로고    scopus 로고
    • Support vector machine classification and validation of cancer tissue samples using microarray expression data
    • Furey,T., Cristianini,N., Duffy,N., Bednarsky,D., Schummer,M. and Haussler,D. (2000) Support vector machine classification and validation of cancer tissue samples using microarray expression data. Bioinformatics, 16, 906-914.
    • (2000) Bioinformatics , vol.16 , pp. 906-914
    • Furey, T.1    Cristianini, N.2    Duffy, N.3    Bednarsky, D.4    Schummer, M.5    Haussler, D.6
  • 11
    • 0036364086 scopus 로고    scopus 로고
    • Singular value decomposition regression models for classification of tumors from microarray experiments
    • Ghosh,D. (2002) Singular value decomposition regression models for classification of tumors from microarray experiments. Pac. Symp. Biocomput., 98, 18-29.
    • (2002) Pac. Symp. Biocomput. , vol.98 , pp. 18-29
    • Ghosh, D.1
  • 12
    • 0346102889 scopus 로고    scopus 로고
    • Penalized discriminant methods for the classification of tumors from gene expression data
    • Ghosh,D. (2003) Penalized discriminant methods for the classification of tumors from gene expression data. Biometrics, 59, 992-1000.
    • (2003) Biometrics , vol.59 , pp. 992-1000
    • Ghosh, D.1
  • 14
    • 0001648516 scopus 로고
    • Iteratively reweighted least squares for maximum likelihood estimation, and some robust and resistant alternatives
    • Green,P. (1984) Iteratively reweighted least squares for maximum likelihood estimation, and some robust and resistant alternatives. J.R. Statist. Soc. B, 46(2), 149-192.
    • (1984) J.R. Statist. Soc. B , vol.46 , Issue.2 , pp. 149-192
    • Green, P.1
  • 15
    • 84946280337 scopus 로고
    • On the structure of partial least squares regression
    • Helland,I. (1988) On the structure of partial least squares regression. Commun. Statist., Simulation Comput., 17(2), 581-607.
    • (1988) Commun. Statist., Simulation Comput. , vol.17 , Issue.2 , pp. 581-607
    • Helland, I.1
  • 16
    • 0242559063 scopus 로고    scopus 로고
    • Linear regression and two-class classification with gene expression data
    • Huang,X. and Pan,W. (2003) Linear regression and two-class classification with gene expression data. Bioinformatics, 19, 2072-2078.
    • (2003) Bioinformatics , vol.19 , pp. 2072-2078
    • Huang, X.1    Pan, W.2
  • 18
  • 19
    • 0242718698 scopus 로고    scopus 로고
    • Iteratively reweighted partial least squares estimation for generalized linear regression
    • Marx,B.D. (1996) Iteratively reweighted partial least squares estimation for generalized linear regression. Technometrics, 38 4), 374-381.
    • (1996) Technometrics , vol.38 , Issue.4 , pp. 374-381
    • Marx, B.D.1
  • 20
    • 0000957593 scopus 로고
    • Principal components regression in exploratory statistical research
    • Massy,W.F. (1965) Principal components regression in exploratory statistical research. J. Amer. Statist. Assoc., 60 234-246.
    • (1965) J. Amer. Statist. Assoc. , vol.60 , pp. 234-246
    • Massy, W.F.1
  • 21
    • 84948254608 scopus 로고
    • Comparison of prediction methods for multicollinear data
    • Naes,T. and Martens,H. (1985) Comparison of prediction methods for multicollinear data. Commun. Statist. Simulation Comput. 14, 545-576.
    • (1985) Commun. Statist. Simulation Comput. , vol.14 , pp. 545-576
    • Naes, T.1    Martens, H.2
  • 22
    • 0036166439 scopus 로고    scopus 로고
    • Tumor classification by partial least squares using microarray gene expression data
    • Nguyen,D. and Rocke,D. (2002) Tumor classification by partial least squares using microarray gene expression data. Bioinformatics 18(1), 39-50.
    • (2002) Bioinformatics , vol.18 , Issue.1 , pp. 39-50
    • Nguyen, D.1    Rocke, D.2
  • 23
    • 0001431651 scopus 로고
    • A note on A. Albert and J.A. Anderson's conditions for the existence of maximum likelihood estimates in logistic regression models
    • Santner,T. and Duffy,D. (1986) A note on A. Albert and J.A. Anderson's conditions for the existence of maximum likelihood estimates in logistic regression models. Biometrika, 73(3), 755-758.
    • (1986) Biometrika , vol.73 , Issue.3 , pp. 755-758
    • Santner, T.1    Duffy, D.2
  • 27
    • 0002692783 scopus 로고
    • Soft modelling by latent variables: The non-linear iterative partial least squares (NIPALS) approach
    • Gani,J. (ed.), Academic Press, London
    • Wold,H. (1975) Soft modelling by latent variables: the non-linear iterative partial least squares (NIPALS) approach. In Gani,J. (ed.), Perspectives in Probability and Statistics, Papers in Honour of M. S. Bartlett, Academic Press, London.pp. 117-142.
    • (1975) Perspectives in Probability and Statistics, Papers in Honour of M. S. Bartlett , pp. 117-142
    • Wold, H.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.