메뉴 건너뛰기




Volumn 40, Issue 12, 2007, Pages 3379-3392

Extracting gene regulation information for cancer classification

Author keywords

Cancer classification; Gene expression levels; Gene regulation; Microarray; Prediction strength

Indexed keywords

ALGORITHMS; GENE EXPRESSION; INFORMATION RETRIEVAL; MICROARRAYS; ONCOLOGY; TISSUE;

EID: 34547691339     PISSN: 00313203     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.patcog.2007.04.007     Document Type: Article
Times cited : (40)

References (39)
  • 3
    • 0033536012 scopus 로고    scopus 로고
    • Broad patterns of gene expression revealed by clustering analysis of tumor and normal colon tissues probed by oligonucleotide arrays
    • Alon U., Barkai N., Notterman D.A., Gish K., Ybarra S., Mack D., and Levine A.J. Broad patterns of gene expression revealed by clustering analysis of tumor and normal colon tissues probed by oligonucleotide arrays. Proc. Nat. Acad. Sci. USA 96 (1999) 6745-6750
    • (1999) Proc. Nat. Acad. Sci. USA , vol.96 , pp. 6745-6750
    • Alon, U.1    Barkai, N.2    Notterman, D.A.3    Gish, K.4    Ybarra, S.5    Mack, D.6    Levine, A.J.7
  • 4
    • 0034948896 scopus 로고    scopus 로고
    • A Bayesian framework for the analysis of microarray expression data: regularized t-test and statistical inferences of gene changes
    • Baldi P., and Long A.D. A Bayesian framework for the analysis of microarray expression data: regularized t-test and statistical inferences of gene changes. Bioinformatics 17 (2001) 509-519
    • (2001) Bioinformatics , vol.17 , pp. 509-519
    • Baldi, P.1    Long, A.D.2
  • 6
    • 0036489046 scopus 로고    scopus 로고
    • Comparison of discrimination methods for the classification of tumors using gene expression data
    • Dudoit S., Fridlyand J., and Speed T.P. Comparison of discrimination methods for the classification of tumors using gene expression data. J. Amer. Statist. Assoc. 97 (2000)
    • (2000) J. Amer. Statist. Assoc. , vol.97
    • Dudoit, S.1    Fridlyand, J.2    Speed, T.P.3
  • 7
    • 0242559063 scopus 로고    scopus 로고
    • Linear regression and two-class classification with gene expression data
    • Huang X., and Pan W. Linear regression and two-class classification with gene expression data. Bioinformatics 19 (2003) 2072-2978
    • (2003) Bioinformatics , vol.19 , pp. 2072-2978
    • Huang, X.1    Pan, W.2
  • 9
    • 0033636139 scopus 로고    scopus 로고
    • Support vector machine classification and validation of cancer tissue samples using microarray expression data
    • Furey T.S., Cristianini N., Duffy N., Bednarski D., Schummer M., and Haussler D. Support vector machine classification and validation of cancer tissue samples using microarray expression data. Bioinformatics 16 (2000) 906-914
    • (2000) Bioinformatics , vol.16 , pp. 906-914
    • Furey, T.S.1    Cristianini, N.2    Duffy, N.3    Bednarski, D.4    Schummer, M.5    Haussler, D.6
  • 10
    • 0036161259 scopus 로고    scopus 로고
    • Gene selection for cancer classification using support vector machines
    • Guyon I., Weston J., Barnhill S., and Vapnik V. Gene selection for cancer classification using support vector machines. Mach. Learn. 46 (2002) 389-422
    • (2002) Mach. Learn. , vol.46 , pp. 389-422
    • Guyon, I.1    Weston, J.2    Barnhill, S.3    Vapnik, V.4
  • 11
    • 0742307309 scopus 로고    scopus 로고
    • Feature subset selection for support vector machines through discriminative function pruning analysis
    • Mao K.Z. Feature subset selection for support vector machines through discriminative function pruning analysis. IEEE Trans. Syst. Man Cybern. Part B 34 (2004) 60-67
    • (2004) IEEE Trans. Syst. Man Cybern. Part B , vol.34 , pp. 60-67
    • Mao, K.Z.1
  • 12
    • 15244346245 scopus 로고    scopus 로고
    • Detecting differentially expressed genes by relative entropy
    • Yan X., Deng M., Fung W.K., and Qian M. Detecting differentially expressed genes by relative entropy. J. Theor. Biol. 234 (2005) 395-402
    • (2005) J. Theor. Biol. , vol.234 , pp. 395-402
    • Yan, X.1    Deng, M.2    Fung, W.K.3    Qian, M.4
  • 13
    • 0036376993 scopus 로고    scopus 로고
    • Statistical methods for identifying differentially expressed genes in replicated cDNA microarray experiments
    • Dudoit S., Yang Y.H., Callow M.J., and Speed T.P. Statistical methods for identifying differentially expressed genes in replicated cDNA microarray experiments. Statist. Sin. 12 (2002) 111-139
    • (2002) Statist. Sin. , vol.12 , pp. 111-139
    • Dudoit, S.1    Yang, Y.H.2    Callow, M.J.3    Speed, T.P.4
  • 14
    • 0035942271 scopus 로고    scopus 로고
    • Significance analysis of microarrays applied to the ionizing radiation response
    • Tusher V.G., Tibshirani R., and Chu G. Significance analysis of microarrays applied to the ionizing radiation response. PNAS 98 (2001) 5116-5121
    • (2001) PNAS , vol.98 , pp. 5116-5121
    • Tusher, V.G.1    Tibshirani, R.2    Chu, G.3
  • 15
    • 4444235995 scopus 로고    scopus 로고
    • Detecting differential gene expression with a semiparametric hierarchical mixture method gene expression profiles
    • Newton M.A., Noueiry A., Sarkar D., and Ahlquist P. Detecting differential gene expression with a semiparametric hierarchical mixture method gene expression profiles. Biostatistics 5 (2004)
    • (2004) Biostatistics , vol.5
    • Newton, M.A.1    Noueiry, A.2    Sarkar, D.3    Ahlquist, P.4
  • 16
    • 2142854576 scopus 로고    scopus 로고
    • A mixture model approach to detecting differentially expressed genes with microarray data
    • Pan W., Lin J., and Le C.T. A mixture model approach to detecting differentially expressed genes with microarray data. Funct Integr Genomics 3 (2003) 117-124
    • (2003) Funct Integr Genomics , vol.3 , pp. 117-124
    • Pan, W.1    Lin, J.2    Le, C.T.3
  • 17
    • 16344371755 scopus 로고    scopus 로고
    • Identifying differentially expressed genes from microarray experiments via statistic synthesis
    • Yang Y.H., Xiao Y., and Segal M.R. Identifying differentially expressed genes from microarray experiments via statistic synthesis. Bioinformatics 21 (2005) 1084-1093
    • (2005) Bioinformatics , vol.21 , pp. 1084-1093
    • Yang, Y.H.1    Xiao, Y.2    Segal, M.R.3
  • 18
    • 0036364086 scopus 로고    scopus 로고
    • Singular value decomposition regression models for classification of tumors from microarray experiments
    • Ghosh D. Singular value decomposition regression models for classification of tumors from microarray experiments. Pac. Symp. Biocomput. 98 (2002) 18-29
    • (2002) Pac. Symp. Biocomput. , vol.98 , pp. 18-29
    • Ghosh, D.1
  • 19
    • 0037461021 scopus 로고    scopus 로고
    • Effective dimension reduction methods for tumor classification using gene expression data
    • Antoniadis A., Lambert-Lacroix S., and Leblanc F. Effective dimension reduction methods for tumor classification using gene expression data. Bioinformatics 19 (2003) 563-570
    • (2003) Bioinformatics , vol.19 , pp. 563-570
    • Antoniadis, A.1    Lambert-Lacroix, S.2    Leblanc, F.3
  • 20
    • 0037460957 scopus 로고    scopus 로고
    • PCA disjoint models for multiclass cancer analysis using gene expression data
    • Bicciato S., Luchini A., and Bello C.D. PCA disjoint models for multiclass cancer analysis using gene expression data. Bioinformatics 19 (2003) 571-578
    • (2003) Bioinformatics , vol.19 , pp. 571-578
    • Bicciato, S.1    Luchini, A.2    Bello, C.D.3
  • 21
    • 0034800371 scopus 로고    scopus 로고
    • Principal component analysis for clustering gene expression data
    • Yeung K.Y., and Ruzzo W.L. Principal component analysis for clustering gene expression data. Bioinformatics 17 (2001) 763-774
    • (2001) Bioinformatics , vol.17 , pp. 763-774
    • Yeung, K.Y.1    Ruzzo, W.L.2
  • 22
    • 0036166439 scopus 로고    scopus 로고
    • Tumor classification by partial least squares using microarray gene expression data
    • Nguyen D.V., and Rocke D.M. Tumor classification by partial least squares using microarray gene expression data. Bioinformatics 18 (2002) 39-50
    • (2002) Bioinformatics , vol.18 , pp. 39-50
    • Nguyen, D.V.1    Rocke, D.M.2
  • 23
    • 10244252786 scopus 로고    scopus 로고
    • Systematic benchmarking of microarray data classification: assessing the role of non-linearity and dimensionality reduction
    • Pochet N., Smet F.D., Suykens J.A., and Moor B.D. Systematic benchmarking of microarray data classification: assessing the role of non-linearity and dimensionality reduction. Bioinformatics 20 (2004) 3185-3195
    • (2004) Bioinformatics , vol.20 , pp. 3185-3195
    • Pochet, N.1    Smet, F.D.2    Suykens, J.A.3    Moor, B.D.4
  • 24
    • 0031381525 scopus 로고    scopus 로고
    • Wrappers for feature subset selection
    • Ron K., and George J.H. Wrappers for feature subset selection. Artif. Intell. J. 97 (1997) 273-324
    • (1997) Artif. Intell. J. , vol.97 , pp. 273-324
    • Ron, K.1    George, J.H.2
  • 26
    • 18244369245 scopus 로고    scopus 로고
    • Simultaneous classification and feature clustering using discriminant vector quantization with applications to microarray data analysis
    • Li J., and Zha H. Simultaneous classification and feature clustering using discriminant vector quantization with applications to microarray data analysis. Proceedings of the IEEE Computer Society Bioinformatics Conference (CSB'02) (2002)
    • (2002) Proceedings of the IEEE Computer Society Bioinformatics Conference (CSB'02)
    • Li, J.1    Zha, H.2
  • 27
    • 16344365619 scopus 로고    scopus 로고
    • Classification using partial least squares with penalized logistic regression
    • Fort G., and Lambert-Lacroix S. Classification using partial least squares with penalized logistic regression. Bioinformatics 21 (2005) 1104-1111
    • (2005) Bioinformatics , vol.21 , pp. 1104-1111
    • Fort, G.1    Lambert-Lacroix, S.2
  • 28
    • 0036772522 scopus 로고    scopus 로고
    • Bayesian automatic relevance determination algorithm for classifying gene expression data
    • Li Y., Campbell C., and Michael T. Bayesian automatic relevance determination algorithm for classifying gene expression data. Bioinformatics 18 (2002) 1332-1339
    • (2002) Bioinformatics , vol.18 , pp. 1332-1339
    • Li, Y.1    Campbell, C.2    Michael, T.3
  • 29
    • 12344304266 scopus 로고    scopus 로고
    • Gene selection using a two-level hierarchical Bayesian model
    • Bae K., and Mallick B.K. Gene selection using a two-level hierarchical Bayesian model. Bioinformatics 20 (2004) 3423-3430
    • (2004) Bioinformatics , vol.20 , pp. 3423-3430
    • Bae, K.1    Mallick, B.K.2
  • 30
    • 34547652575 scopus 로고    scopus 로고
    • M. West, J.R. Nevins, J.R. Marks, R. Spang, H. Zuzan, Bayesian regression analysis in the Large p, small n paradigm with application in DNA micrarray studies, Technical Report, Duke University, 2000.
  • 34
    • 33646195142 scopus 로고    scopus 로고
    • MIT Department of Electrical Engineering and Computer Science
    • Dror R.O. Noise models in gene array analysis (2001), MIT Department of Electrical Engineering and Computer Science
    • (2001) Noise models in gene array analysis
    • Dror, R.O.1
  • 35
    • 0034923013 scopus 로고    scopus 로고
    • On differential variability of expression ratios: improving statistical inference about gene expression changes from microarray data
    • Newton M.A., Kendziorski C.M., Richmond C.S., Blattner F.R., and Tsui K.W. On differential variability of expression ratios: improving statistical inference about gene expression changes from microarray data. J. Comput. Biol. 8 (2001) 37-52
    • (2001) J. Comput. Biol. , vol.8 , pp. 37-52
    • Newton, M.A.1    Kendziorski, C.M.2    Richmond, C.S.3    Blattner, F.R.4    Tsui, K.W.5
  • 36
    • 14644433026 scopus 로고    scopus 로고
    • A semiparametric approach for marker gene selection based on gene expression data
    • Guan Z., and Zhao H. A semiparametric approach for marker gene selection based on gene expression data. Bioinformatics 21 (2005) 529-536
    • (2005) Bioinformatics , vol.21 , pp. 529-536
    • Guan, Z.1    Zhao, H.2
  • 39
    • 1842559888 scopus 로고    scopus 로고
    • Optimization models for cancer classification: extracting gene interaction information from microarray expression data
    • Antonov A.V., Tetko I.V., Mader M.T., Budczies J., and Mewes H.W. Optimization models for cancer classification: extracting gene interaction information from microarray expression data. Bioinformatics 20 (2004) 644-652
    • (2004) Bioinformatics , vol.20 , pp. 644-652
    • Antonov, A.V.1    Tetko, I.V.2    Mader, M.T.3    Budczies, J.4    Mewes, H.W.5


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.