-
2
-
-
0033569406
-
Molecular classification of cancer: class discovery and class prediction by gene expression monitoring
-
Golub T.R., Slonim D.K., Tamayo P., Huard C., Gaasenbeek M., Mesirov J.P., Coller H., Loh M.L., Downing J.R., Caligiuri M.A., Bloomfield C.D., and Lander E.S. Molecular classification of cancer: class discovery and class prediction by gene expression monitoring. Science 286 (1999) 531-537
-
(1999)
Science
, vol.286
, pp. 531-537
-
-
Golub, T.R.1
Slonim, D.K.2
Tamayo, P.3
Huard, C.4
Gaasenbeek, M.5
Mesirov, J.P.6
Coller, H.7
Loh, M.L.8
Downing, J.R.9
Caligiuri, M.A.10
Bloomfield, C.D.11
Lander, E.S.12
-
3
-
-
0033536012
-
Broad patterns of gene expression revealed by clustering analysis of tumor and normal colon tissues probed by oligonucleotide arrays
-
Alon U., Barkai N., Notterman D.A., Gish K., Ybarra S., Mack D., and Levine A.J. Broad patterns of gene expression revealed by clustering analysis of tumor and normal colon tissues probed by oligonucleotide arrays. Proc. Nat. Acad. Sci. USA 96 (1999) 6745-6750
-
(1999)
Proc. Nat. Acad. Sci. USA
, vol.96
, pp. 6745-6750
-
-
Alon, U.1
Barkai, N.2
Notterman, D.A.3
Gish, K.4
Ybarra, S.5
Mack, D.6
Levine, A.J.7
-
4
-
-
0034948896
-
A Bayesian framework for the analysis of microarray expression data: regularized t-test and statistical inferences of gene changes
-
Baldi P., and Long A.D. A Bayesian framework for the analysis of microarray expression data: regularized t-test and statistical inferences of gene changes. Bioinformatics 17 (2001) 509-519
-
(2001)
Bioinformatics
, vol.17
, pp. 509-519
-
-
Baldi, P.1
Long, A.D.2
-
5
-
-
12244265090
-
Gene selection: a Bayesian variable selection approach
-
Kyeong E.L., Naijun S., Edward R.D., Marina V., and Bani K.M. Gene selection: a Bayesian variable selection approach. Bioinformatics 19 (2003) 90-97
-
(2003)
Bioinformatics
, vol.19
, pp. 90-97
-
-
Kyeong, E.L.1
Naijun, S.2
Edward, R.D.3
Marina, V.4
Bani, K.M.5
-
6
-
-
0036489046
-
Comparison of discrimination methods for the classification of tumors using gene expression data
-
Dudoit S., Fridlyand J., and Speed T.P. Comparison of discrimination methods for the classification of tumors using gene expression data. J. Amer. Statist. Assoc. 97 (2000)
-
(2000)
J. Amer. Statist. Assoc.
, vol.97
-
-
Dudoit, S.1
Fridlyand, J.2
Speed, T.P.3
-
7
-
-
0242559063
-
Linear regression and two-class classification with gene expression data
-
Huang X., and Pan W. Linear regression and two-class classification with gene expression data. Bioinformatics 19 (2003) 2072-2978
-
(2003)
Bioinformatics
, vol.19
, pp. 2072-2978
-
-
Huang, X.1
Pan, W.2
-
8
-
-
0034954414
-
Classification and diagnostic prediction of cancers using gene expression profiling and artificial neural networks
-
Khan J., Wei J.S., Ringner M., Saal L.H., Landanyi M., Westermann F., Berthold F., Schwab M., Antnescu C.R., Peterson C., and Meltzer P.S. Classification and diagnostic prediction of cancers using gene expression profiling and artificial neural networks. Nature Med. 7 (2001) 673-679
-
(2001)
Nature Med.
, vol.7
, pp. 673-679
-
-
Khan, J.1
Wei, J.S.2
Ringner, M.3
Saal, L.H.4
Landanyi, M.5
Westermann, F.6
Berthold, F.7
Schwab, M.8
Antnescu, C.R.9
Peterson, C.10
Meltzer, P.S.11
-
9
-
-
0033636139
-
Support vector machine classification and validation of cancer tissue samples using microarray expression data
-
Furey T.S., Cristianini N., Duffy N., Bednarski D., Schummer M., and Haussler D. Support vector machine classification and validation of cancer tissue samples using microarray expression data. Bioinformatics 16 (2000) 906-914
-
(2000)
Bioinformatics
, vol.16
, pp. 906-914
-
-
Furey, T.S.1
Cristianini, N.2
Duffy, N.3
Bednarski, D.4
Schummer, M.5
Haussler, D.6
-
10
-
-
0036161259
-
Gene selection for cancer classification using support vector machines
-
Guyon I., Weston J., Barnhill S., and Vapnik V. Gene selection for cancer classification using support vector machines. Mach. Learn. 46 (2002) 389-422
-
(2002)
Mach. Learn.
, vol.46
, pp. 389-422
-
-
Guyon, I.1
Weston, J.2
Barnhill, S.3
Vapnik, V.4
-
11
-
-
0742307309
-
Feature subset selection for support vector machines through discriminative function pruning analysis
-
Mao K.Z. Feature subset selection for support vector machines through discriminative function pruning analysis. IEEE Trans. Syst. Man Cybern. Part B 34 (2004) 60-67
-
(2004)
IEEE Trans. Syst. Man Cybern. Part B
, vol.34
, pp. 60-67
-
-
Mao, K.Z.1
-
12
-
-
15244346245
-
Detecting differentially expressed genes by relative entropy
-
Yan X., Deng M., Fung W.K., and Qian M. Detecting differentially expressed genes by relative entropy. J. Theor. Biol. 234 (2005) 395-402
-
(2005)
J. Theor. Biol.
, vol.234
, pp. 395-402
-
-
Yan, X.1
Deng, M.2
Fung, W.K.3
Qian, M.4
-
13
-
-
0036376993
-
Statistical methods for identifying differentially expressed genes in replicated cDNA microarray experiments
-
Dudoit S., Yang Y.H., Callow M.J., and Speed T.P. Statistical methods for identifying differentially expressed genes in replicated cDNA microarray experiments. Statist. Sin. 12 (2002) 111-139
-
(2002)
Statist. Sin.
, vol.12
, pp. 111-139
-
-
Dudoit, S.1
Yang, Y.H.2
Callow, M.J.3
Speed, T.P.4
-
14
-
-
0035942271
-
Significance analysis of microarrays applied to the ionizing radiation response
-
Tusher V.G., Tibshirani R., and Chu G. Significance analysis of microarrays applied to the ionizing radiation response. PNAS 98 (2001) 5116-5121
-
(2001)
PNAS
, vol.98
, pp. 5116-5121
-
-
Tusher, V.G.1
Tibshirani, R.2
Chu, G.3
-
15
-
-
4444235995
-
Detecting differential gene expression with a semiparametric hierarchical mixture method gene expression profiles
-
Newton M.A., Noueiry A., Sarkar D., and Ahlquist P. Detecting differential gene expression with a semiparametric hierarchical mixture method gene expression profiles. Biostatistics 5 (2004)
-
(2004)
Biostatistics
, vol.5
-
-
Newton, M.A.1
Noueiry, A.2
Sarkar, D.3
Ahlquist, P.4
-
16
-
-
2142854576
-
A mixture model approach to detecting differentially expressed genes with microarray data
-
Pan W., Lin J., and Le C.T. A mixture model approach to detecting differentially expressed genes with microarray data. Funct Integr Genomics 3 (2003) 117-124
-
(2003)
Funct Integr Genomics
, vol.3
, pp. 117-124
-
-
Pan, W.1
Lin, J.2
Le, C.T.3
-
17
-
-
16344371755
-
Identifying differentially expressed genes from microarray experiments via statistic synthesis
-
Yang Y.H., Xiao Y., and Segal M.R. Identifying differentially expressed genes from microarray experiments via statistic synthesis. Bioinformatics 21 (2005) 1084-1093
-
(2005)
Bioinformatics
, vol.21
, pp. 1084-1093
-
-
Yang, Y.H.1
Xiao, Y.2
Segal, M.R.3
-
18
-
-
0036364086
-
Singular value decomposition regression models for classification of tumors from microarray experiments
-
Ghosh D. Singular value decomposition regression models for classification of tumors from microarray experiments. Pac. Symp. Biocomput. 98 (2002) 18-29
-
(2002)
Pac. Symp. Biocomput.
, vol.98
, pp. 18-29
-
-
Ghosh, D.1
-
19
-
-
0037461021
-
Effective dimension reduction methods for tumor classification using gene expression data
-
Antoniadis A., Lambert-Lacroix S., and Leblanc F. Effective dimension reduction methods for tumor classification using gene expression data. Bioinformatics 19 (2003) 563-570
-
(2003)
Bioinformatics
, vol.19
, pp. 563-570
-
-
Antoniadis, A.1
Lambert-Lacroix, S.2
Leblanc, F.3
-
20
-
-
0037460957
-
PCA disjoint models for multiclass cancer analysis using gene expression data
-
Bicciato S., Luchini A., and Bello C.D. PCA disjoint models for multiclass cancer analysis using gene expression data. Bioinformatics 19 (2003) 571-578
-
(2003)
Bioinformatics
, vol.19
, pp. 571-578
-
-
Bicciato, S.1
Luchini, A.2
Bello, C.D.3
-
21
-
-
0034800371
-
Principal component analysis for clustering gene expression data
-
Yeung K.Y., and Ruzzo W.L. Principal component analysis for clustering gene expression data. Bioinformatics 17 (2001) 763-774
-
(2001)
Bioinformatics
, vol.17
, pp. 763-774
-
-
Yeung, K.Y.1
Ruzzo, W.L.2
-
22
-
-
0036166439
-
Tumor classification by partial least squares using microarray gene expression data
-
Nguyen D.V., and Rocke D.M. Tumor classification by partial least squares using microarray gene expression data. Bioinformatics 18 (2002) 39-50
-
(2002)
Bioinformatics
, vol.18
, pp. 39-50
-
-
Nguyen, D.V.1
Rocke, D.M.2
-
23
-
-
10244252786
-
Systematic benchmarking of microarray data classification: assessing the role of non-linearity and dimensionality reduction
-
Pochet N., Smet F.D., Suykens J.A., and Moor B.D. Systematic benchmarking of microarray data classification: assessing the role of non-linearity and dimensionality reduction. Bioinformatics 20 (2004) 3185-3195
-
(2004)
Bioinformatics
, vol.20
, pp. 3185-3195
-
-
Pochet, N.1
Smet, F.D.2
Suykens, J.A.3
Moor, B.D.4
-
24
-
-
0031381525
-
Wrappers for feature subset selection
-
Ron K., and George J.H. Wrappers for feature subset selection. Artif. Intell. J. 97 (1997) 273-324
-
(1997)
Artif. Intell. J.
, vol.97
, pp. 273-324
-
-
Ron, K.1
George, J.H.2
-
26
-
-
18244369245
-
Simultaneous classification and feature clustering using discriminant vector quantization with applications to microarray data analysis
-
Li J., and Zha H. Simultaneous classification and feature clustering using discriminant vector quantization with applications to microarray data analysis. Proceedings of the IEEE Computer Society Bioinformatics Conference (CSB'02) (2002)
-
(2002)
Proceedings of the IEEE Computer Society Bioinformatics Conference (CSB'02)
-
-
Li, J.1
Zha, H.2
-
27
-
-
16344365619
-
Classification using partial least squares with penalized logistic regression
-
Fort G., and Lambert-Lacroix S. Classification using partial least squares with penalized logistic regression. Bioinformatics 21 (2005) 1104-1111
-
(2005)
Bioinformatics
, vol.21
, pp. 1104-1111
-
-
Fort, G.1
Lambert-Lacroix, S.2
-
28
-
-
0036772522
-
Bayesian automatic relevance determination algorithm for classifying gene expression data
-
Li Y., Campbell C., and Michael T. Bayesian automatic relevance determination algorithm for classifying gene expression data. Bioinformatics 18 (2002) 1332-1339
-
(2002)
Bioinformatics
, vol.18
, pp. 1332-1339
-
-
Li, Y.1
Campbell, C.2
Michael, T.3
-
29
-
-
12344304266
-
Gene selection using a two-level hierarchical Bayesian model
-
Bae K., and Mallick B.K. Gene selection using a two-level hierarchical Bayesian model. Bioinformatics 20 (2004) 3423-3430
-
(2004)
Bioinformatics
, vol.20
, pp. 3423-3430
-
-
Bae, K.1
Mallick, B.K.2
-
30
-
-
34547652575
-
-
M. West, J.R. Nevins, J.R. Marks, R. Spang, H. Zuzan, Bayesian regression analysis in the Large p, small n paradigm with application in DNA micrarray studies, Technical Report, Duke University, 2000.
-
-
-
-
33
-
-
12244289603
-
Between-group analysis of microarray data
-
Culhane A.C., Perriere G., Considine E.C., Cotter T.G., and Higgins D.G. Between-group analysis of microarray data. Bioinformatics 18 (2002) 1600-1608
-
(2002)
Bioinformatics
, vol.18
, pp. 1600-1608
-
-
Culhane, A.C.1
Perriere, G.2
Considine, E.C.3
Cotter, T.G.4
Higgins, D.G.5
-
34
-
-
33646195142
-
-
MIT Department of Electrical Engineering and Computer Science
-
Dror R.O. Noise models in gene array analysis (2001), MIT Department of Electrical Engineering and Computer Science
-
(2001)
Noise models in gene array analysis
-
-
Dror, R.O.1
-
35
-
-
0034923013
-
On differential variability of expression ratios: improving statistical inference about gene expression changes from microarray data
-
Newton M.A., Kendziorski C.M., Richmond C.S., Blattner F.R., and Tsui K.W. On differential variability of expression ratios: improving statistical inference about gene expression changes from microarray data. J. Comput. Biol. 8 (2001) 37-52
-
(2001)
J. Comput. Biol.
, vol.8
, pp. 37-52
-
-
Newton, M.A.1
Kendziorski, C.M.2
Richmond, C.S.3
Blattner, F.R.4
Tsui, K.W.5
-
36
-
-
14644433026
-
A semiparametric approach for marker gene selection based on gene expression data
-
Guan Z., and Zhao H. A semiparametric approach for marker gene selection based on gene expression data. Bioinformatics 21 (2005) 529-536
-
(2005)
Bioinformatics
, vol.21
, pp. 529-536
-
-
Guan, Z.1
Zhao, H.2
-
37
-
-
19044391072
-
Gene expression correlates of clinical prostate cancer behavior
-
Singh D., Febbo P.G., Ross K., Jackson D.G., Manola J., Ladd C., Tamayo P., Renshaw A.A., D' Amico A.V., and Richie J.P.e.a. Gene expression correlates of clinical prostate cancer behavior. Cancer Cell 1 (2002)
-
(2002)
Cancer Cell
, vol.1
-
-
Singh, D.1
Febbo, P.G.2
Ross, K.3
Jackson, D.G.4
Manola, J.5
Ladd, C.6
Tamayo, P.7
Renshaw, A.A.8
D' Amico, A.V.9
Richie, J.P.e.a.10
-
38
-
-
0035881732
-
Analysis of gene expression identifies candidate markers and pharmacological targets in prostate cancer
-
Welsh J.B., Sapinoso L.M., Su A.I., Kern S.G., Wang-Rodriguez J., Moskaluk C.A., Frierson Jr. H.F., and Hampton G.M. Analysis of gene expression identifies candidate markers and pharmacological targets in prostate cancer. Cancer Res. 61 (2001) 5974-5978
-
(2001)
Cancer Res.
, vol.61
, pp. 5974-5978
-
-
Welsh, J.B.1
Sapinoso, L.M.2
Su, A.I.3
Kern, S.G.4
Wang-Rodriguez, J.5
Moskaluk, C.A.6
Frierson Jr., H.F.7
Hampton, G.M.8
-
39
-
-
1842559888
-
Optimization models for cancer classification: extracting gene interaction information from microarray expression data
-
Antonov A.V., Tetko I.V., Mader M.T., Budczies J., and Mewes H.W. Optimization models for cancer classification: extracting gene interaction information from microarray expression data. Bioinformatics 20 (2004) 644-652
-
(2004)
Bioinformatics
, vol.20
, pp. 644-652
-
-
Antonov, A.V.1
Tetko, I.V.2
Mader, M.T.3
Budczies, J.4
Mewes, H.W.5
|