-
1
-
-
0042125511
-
Gene expression profiling for the prediction of therapeutic response to docetaxel in patients with breast cancer
-
J. Chang, E. Wooten, A. Tsimelzon, S. Hilsenbeck, M. Gutierrez, R. Elledg, S. Mohsin, C. Osborne, G. Chamness, D. Allred, and P. O’Connell, “Gene expression profiling for the prediction of therapeutic response to docetaxel in patients with breast cancer,” Mechan. Disease, vol. 362, no. 9831, pp. 362-369, 2003
-
(2003)
Mechan. Disease
, vol.362
, Issue.9831
, pp. 362-369
-
-
Chang, J.1
Wooten, E.2
Tsimelzon, A.3
Hilsenbeck, S.4
Gutierrez, M.5
Elledg, R.6
Mohsin, S.7
Osborne, C.8
Chamness, G.9
Allred, D.10
O’Connell, P.11
-
2
-
-
18244409687
-
Gene expression profiling predicts clinical outcome of breast cancer
-
L. Van’t Veer, H. Dai, and M. Van De Vijver, “Gene expression profiling predicts clinical outcome of breast cancer,” Nature, vol. 415, no. 6871, pp. 530–536, 2002.
-
(2002)
Nature
, vol.415
, Issue.6871
, pp. 530-536
-
-
Van’t Veer, L.1
Dai, H.2
Van De Vijver, M.3
-
3
-
-
2542640080
-
Mass spectrometry as a diagnostic and a cancer biomarker discovery tool: Opportunities and potential limitations
-
E. Diamandis, “Mass spectrometry as a diagnostic and a cancer biomarker discovery tool: Opportunities and potential limitations,” Mol. Cell Proteomics, vol. 3, no. 4, pp. 367–378, 2004.
-
(2004)
Mol. Cell Proteomics
, vol.3
, Issue.4
, pp. 367-378
-
-
Diamandis, E.1
-
4
-
-
34347382283
-
Cancer genomics, proteomics, and clinic applications
-
Edward R. Dougherty, Ilya Shmulevich, Jie Chen, and Z. Jane Wang, Eds. New York: Hindawi
-
X. Fu, C. Hu, J. Chen, Z.J. Wang, and K.J. Ray Liu, “Cancer genomics, proteomics, and clinic applications,” in Genomic Signal Processing and Statistics, Edward R. Dougherty, Ilya Shmulevich, Jie Chen, and Z. Jane Wang, Eds. New York: Hindawi, 2005
-
(2005)
Genomic Signal Processing and Statistics
-
-
Fu, X.1
Hu, C.2
Chen, J.3
Wang, Z.J.4
Ray Liu, K.J.5
-
5
-
-
0032441150
-
Cluster analysis and display of genome-wide expression patterns
-
M. Eisen, P. Spellman, P. Brown, and D. Botstein, “Cluster analysis and display of genome-wide expression patterns,” Proc. Nat. Academy Sci., vol. 95, no. 25, pp. 14683-14688, 1998.
-
(1998)
Proc. Nat. Academy Sci.
, vol.95
, Issue.25
, pp. 14683-14688
-
-
Eisen, M.1
Spellman, P.2
Brown, P.3
Botstein, D.4
-
6
-
-
0033569406
-
Molecular classification of cancer: Class discovery and class prediction by gene expression monitoring
-
T. Golub, D. Slonim, P. Tamayo, C. Huard, M. Gaasenbeek, J. Mesirov, H. Coller, M. Loh, J. Downing, M. Caligirui, C. Bloomfield, and E. Lander, “Molecular classification of cancer: Class discovery and class prediction by gene expression monitoring,” Science, vol. 286, No. 5439, pp. 531-537, 1999.
-
(1999)
Science
, vol.286
, Issue.5439
, pp. 531-537
-
-
Golub, T.1
Slonim, D.2
Tamayo, P.3
Huard, C.4
Gaasenbeek, M.5
Mesirov, J.6
Coller, H.7
Loh, M.8
Downing, J.9
Caligirui, M.10
Bloomfield, C.11
Lander, E.12
-
7
-
-
0036166439
-
Tumor classification by partial least squares using microarray gene expression data
-
D. Nguyen and D. Rocke, “Tumor classification by partial least squares using microarray gene expression data,” Bioinformatics, vol. 18, no. 1, pp. 39-50, 2002.
-
(2002)
Bioinformatics
, vol.18
, Issue.1
, pp. 39-50
-
-
Nguyen, D.1
Rocke, D.2
-
8
-
-
1542574379
-
Multi-platform, multisite, microarray-based human tumor classification
-
G. Bloom, I. Yang, D. Boulware, K. Kwong, D. Coppola, S. Eschrich, J. Quackenbush, and T. Yeatman, “Multi-platform, multisite, microarray-based human tumor classification,” Amer. J. Pathology, vol. 164, no. 9, p. 16, 2004.
-
(2004)
Amer. J. Pathology
, vol.164
, Issue.9
, pp. 16
-
-
Bloom, G.1
Yang, I.2
Boulware, D.3
Kwong, K.4
Coppola, D.5
Eschrich, S.6
Quackenbush, J.7
Yeatman, T.8
-
9
-
-
84984752407
-
Discovery of 830 candidate therapeutic targets and diagnostic markers for breast cancer using oligonucleotide microarray technology
-
M. Orr, A. Williams, L. Vogt, J. Boland, H. Yang, J. Cossman, and U. Scherf, “Discovery of 830 candidate therapeutic targets and diagnostic markers for breast cancer using oligonucleotide microarray technology,” Nature Publishing Group, Nature Genetics, vol. 27, pp. 77, no. supp, 2001
-
(2001)
Nature Publishing Group, Nature Genetics
, vol.27
, pp. 77
-
-
Orr, M.1
Williams, A.2
Vogt, L.3
Boland, J.4
Yang, H.5
Cossman, J.6
Scherf, U.7
-
10
-
-
0036324715
-
Proteomics and bioinformatics approaches for identification of serum biomarkers to detect breast cancer
-
J. Li, Z. Zhang, J. Rosenzweig, Y. Wang, and D. Chan, “Proteomics and bioinformatics approaches for identification of serum biomarkers to detect breast cancer,” Clin. Chem., vol. 48, no. 8, pp. 1296-1304, 2002.
-
(2002)
Clin. Chem.
, vol.48
, Issue.8
, pp. 1296-1304
-
-
Li, J.1
Zhang, Z.2
Rosenzweig, J.3
Wang, Y.4
Chan, D.5
-
12
-
-
0033028596
-
Systematic determination of genetic network architecture
-
S. Tavazoie, D. Hughes, M. Campbell, R. Cho, and G. Church, “Systematic determination of genetic network architecture,” Nat. Genet., vol. 22, no. 3, pp. 218-285, 1999.
-
(1999)
Nat. Genet.
, vol.22
, Issue.3
, pp. 218-285
-
-
Tavazoie, S.1
Hughes, D.2
Campbell, M.3
Cho, R.4
Church, G.5
-
14
-
-
1542303746
-
The local maximum clustering method and its application in microarray gene expression data analysis
-
W. Wu, Y. Chen, R. Bernard, and A. Yan, “The local maximum clustering method and its application in microarray gene expression data analysis,” EURASIP J. Appl. Signal Processing, vol. 2004, no. 1, pp. 53-63, 2004.
-
(2004)
EURASIP J. Appl. Signal Processing
, vol.2004
, Issue.1
, pp. 53-63
-
-
Wu, W.1
Chen, Y.2
Bernard, R.3
Yan, A.4
-
15
-
-
0033692876
-
Tissue classification with gene expression profiles
-
Aug.
-
A. Ben-Dor, L. Bruhn, N. Friedman, I. Nachman, M. Schummer, and Z. Yakhini, “Tissue classification with gene expression profiles,” J. Computat. Biol., vol. 7, no. 3-4, pp. 559-583, Aug. 2000.
-
(2000)
J. Computat. Biol.
, vol.7
, Issue.3-4
, pp. 559-583
-
-
Ben-Dor, A.1
Bruhn, L.2
Friedman, N.3
Nachman, I.4
Schummer, M.5
Yakhini, Z.6
-
16
-
-
11144273669
-
The preceptron: A probabilistic model for information storage and organization in the brain
-
F. Rosenblatt, “The preceptron: A probabilistic model for information storage and organization in the brain,” Psych. Rev., vol. 65, pp. 386-407, 1958.
-
(1958)
Psych. Rev.
, vol.65
, pp. 386-407
-
-
Rosenblatt, F.1
-
17
-
-
0033636139
-
Support vector machine classification and validation of cancer tissue samples using microarray expression data
-
T. Furey, N. Cristinanini, N. Duffy, D. Bednarski, M. Schmmer, and D. Haussler, “Support vector machine classification and validation of cancer tissue samples using microarray expression data,” Bioinformatics, vol. 16, no. 10, pp. 906-914, 2000.
-
(2000)
Bioinformatics
, vol.16
, Issue.10
, pp. 906-914
-
-
Furey, T.1
Cristinanini, N.2
Duffy, N.3
Bednarski, D.4
Schmmer, M.5
Haussler, D.6
-
18
-
-
0142192759
-
Neural network analysis of lymphoma microarray data: Prognosis and diagnosis near-perfect
-
M. O’Neill, and L. Song, “Neural network analysis of lymphoma microarray data: Prognosis and diagnosis near-perfect,” BMC Bioinformatics, vol. 4, no. 13, pp. 28-41, 2003.
-
(2003)
BMC Bioinformatics
, vol.4
, Issue.13
, pp. 28-41
-
-
O’Neill, M.1
Song, L.2
-
19
-
-
4043059734
-
A Bayesian network classification methodology for gene expression data
-
P. Helman, R. Veroff, S. Atlas, and C. Willman, “A Bayesian network classification methodology for gene expression data,” J. Computat. Biol., vol. 11, no. 4, pp. 581-615, 2004.
-
(2004)
J. Computat. Biol.
, vol.11
, Issue.4
, pp. 581-615
-
-
Helman, P.1
Veroff, R.2
Atlas, S.3
Willman, C.4
-
20
-
-
0033707946
-
Using Bayesian networks to analyze expression data
-
N. Friedman, M. Linial, I. Nachman, and D. Pe'er, “Using Bayesian networks to analyze expression data,” J. Computat. Biol., vol. 7, no. 3-4, pp. 601-620, 2000.
-
(2000)
J. Computat. Biol.
, vol.7
, Issue.3-4
, pp. 601-620
-
-
Friedman, N.1
Linial, M.2
Nachman, I.3
Pe'er, D.4
-
21
-
-
3242753580
-
Bayesian machine learning and its potential applications to the genomic study of oral oncology
-
P. Sebastiani, Y. Yu, and M. Ramoni, “Bayesian machine learning and its potential applications to the genomic study of oral oncology,” Advances Dental Res., vol. 17, no. 1, pp. 104-108, 2003.
-
(2003)
Advances Dental Res.
, vol.17
, Issue.1
, pp. 104-108
-
-
Sebastiani, P.1
Yu, Y.2
Ramoni, M.3
-
22
-
-
25144474549
-
Ensemble dependence model for classification and predication of cancer and normal gene expression data
-
P. Qiu, Z.J. Wang, and K.J.R. Liu, “Ensemble dependence model for classification and predication of cancer and normal gene expression data,” Bioinformatics, vol. 21, no. 14, pp. 3114-3121, 2005.
-
(2005)
Bioinformatics
, vol.21
, Issue.14
, pp. 3114-3121
-
-
Qiu, P.1
Wang, Z.J.2
Liu, K.J.R.3
-
23
-
-
85032766405
-
Dependence modeling and network for biomarker identification and cancer classification
-
P. Qiu, Z.J. Wang, and K.J.R. Liu, “Dependence modeling and network for biomarker identification and cancer classification,” in Proc. EUSIPCO, 2006.
-
(2006)
Proc. EUSIPCO
-
-
Qiu, P.1
Wang, Z.J.2
Liu, K.J.R.3
-
24
-
-
17544364191
-
Optimal number of features as a function of sample size for various classification rules
-
J. Hua, Z. Xiong, J. Lowey, E. Suh, and E.R. Dougherty, “Optimal number of features as a function of sample size for various classification rules,” Bioinformatics, vol. 21, no. 8, pp. 1509-1515, 2005.
-
(2005)
Bioinformatics
, vol.21
, Issue.8
, pp. 1509-1515
-
-
Hua, J.1
Xiong, Z.2
Lowey, J.3
Suh, E.4
Dougherty, E.R.5
-
25
-
-
0037076322
-
Selection bias in gene extraction on the basis of microarray gene-expression data
-
C. Ambroise and G.J. McLachlan, “Selection bias in gene extraction on the basis of microarray gene-expression data,” in Proc. Nat. Academy Sci., vol. 99, no. 10, pp. 6562-6566, 2002.
-
(2002)
Proc. Nat. Academy Sci.
, vol.99
, Issue.10
, pp. 6562-6566
-
-
Ambroise, C.1
McLachlan, G.J.2
-
26
-
-
26444547060
-
Gaussian mixture density estimation applied to microarray data
-
C. Steinhoff, T. Muller, U. Nuber, and M. Vingron, “Gaussian mixture density estimation applied to microarray data,” Lecture Notes in Computer Sciences (LNCS), vol. 2810, pp. 418-429, 2003.
-
(2003)
Lecture Notes in Computer Sciences (LNCS)
, vol.2810
, pp. 418-429
-
-
Steinhoff, C.1
Muller, T.2
Nuber, U.3
Vingron, M.4
-
27
-
-
27744552855
-
Gene selection using logistic regressions based on AIC, BIC, and MDL criteria
-
X. Zhou, X. Wang, E. Dougherty, and S. Wong, “Gene selection using logistic regressions based on AIC, BIC, and MDL criteria,” New Mathematics and Natural Computation, vol. 1, no. 1 129-145, 2005.
-
(2005)
New Mathematics and Natural Computation
, vol.1
, Issue.1
, pp. 129-145
-
-
Zhou, X.1
Wang, X.2
Dougherty, E.3
Wong, S.4
-
28
-
-
15844413351
-
A comprehensive evaluation of multi-category classification methods for microarray gene expression cancer diagnosis
-
A. Statnikovl, C. Aliferis, I. Tsamardinos, D. Hardin, and S. Levy, “A comprehensive evaluation of multi-category classification methods for microarray gene expression cancer diagnosis,” Bioinformatics, vol. 21, no. 5, pp. 631-643, 2005.
-
(2005)
Bioinformatics
, vol.21
, Issue.5
, pp. 631-643
-
-
Statnikovl, A.1
Aliferis, C.2
Tsamardinos, I.3
Hardin, D.4
Levy, S.5
-
29
-
-
85032784120
-
Dependence network modeling for biomarker identification
-
accepted by Oct
-
P. Qiu, Z.J. Wang, and K.J.R. Liu, “Dependence network modeling for biomarker identification,” accepted by Bioinformatics, Oct, 2006.
-
(2006)
Bioinformatics
-
-
Qiu, P.1
Wang, Z.J.2
Liu, K.J.R.3
-
30
-
-
33645804629
-
Polynomial model approach for resynchronization analysis of cell-cycle gene expression data
-
P. Qiu, Z.J. Wang, and K.J.R. Liu, “Polynomial model approach for resynchronization analysis of cell-cycle gene expression data,” Bioinformatics, vol. 22, no. 8, pp. 959-966, 2006.
-
(2006)
Bioinformatics
, vol.22
, Issue.8
, pp. 959-966
-
-
Qiu, P.1
Wang, Z.J.2
Liu, K.J.R.3
|