메뉴 건너뛰기




Volumn 24, Issue 1, 2007, Pages 100-110

Genomic Processing for Cancer Classification and Prediction

Author keywords

[No Author keywords available]

Indexed keywords


EID: 85032752204     PISSN: 10535888     EISSN: None     Source Type: Journal    
DOI: 10.1109/MSP.2007.273063     Document Type: Article
Times cited : (26)

References (30)
  • 2
    • 18244409687 scopus 로고    scopus 로고
    • Gene expression profiling predicts clinical outcome of breast cancer
    • L. Van’t Veer, H. Dai, and M. Van De Vijver, “Gene expression profiling predicts clinical outcome of breast cancer,” Nature, vol. 415, no. 6871, pp. 530–536, 2002.
    • (2002) Nature , vol.415 , Issue.6871 , pp. 530-536
    • Van’t Veer, L.1    Dai, H.2    Van De Vijver, M.3
  • 3
    • 2542640080 scopus 로고    scopus 로고
    • Mass spectrometry as a diagnostic and a cancer biomarker discovery tool: Opportunities and potential limitations
    • E. Diamandis, “Mass spectrometry as a diagnostic and a cancer biomarker discovery tool: Opportunities and potential limitations,” Mol. Cell Proteomics, vol. 3, no. 4, pp. 367–378, 2004.
    • (2004) Mol. Cell Proteomics , vol.3 , Issue.4 , pp. 367-378
    • Diamandis, E.1
  • 4
    • 34347382283 scopus 로고    scopus 로고
    • Cancer genomics, proteomics, and clinic applications
    • Edward R. Dougherty, Ilya Shmulevich, Jie Chen, and Z. Jane Wang, Eds. New York: Hindawi
    • X. Fu, C. Hu, J. Chen, Z.J. Wang, and K.J. Ray Liu, “Cancer genomics, proteomics, and clinic applications,” in Genomic Signal Processing and Statistics, Edward R. Dougherty, Ilya Shmulevich, Jie Chen, and Z. Jane Wang, Eds. New York: Hindawi, 2005
    • (2005) Genomic Signal Processing and Statistics
    • Fu, X.1    Hu, C.2    Chen, J.3    Wang, Z.J.4    Ray Liu, K.J.5
  • 5
    • 0032441150 scopus 로고    scopus 로고
    • Cluster analysis and display of genome-wide expression patterns
    • M. Eisen, P. Spellman, P. Brown, and D. Botstein, “Cluster analysis and display of genome-wide expression patterns,” Proc. Nat. Academy Sci., vol. 95, no. 25, pp. 14683-14688, 1998.
    • (1998) Proc. Nat. Academy Sci. , vol.95 , Issue.25 , pp. 14683-14688
    • Eisen, M.1    Spellman, P.2    Brown, P.3    Botstein, D.4
  • 7
    • 0036166439 scopus 로고    scopus 로고
    • Tumor classification by partial least squares using microarray gene expression data
    • D. Nguyen and D. Rocke, “Tumor classification by partial least squares using microarray gene expression data,” Bioinformatics, vol. 18, no. 1, pp. 39-50, 2002.
    • (2002) Bioinformatics , vol.18 , Issue.1 , pp. 39-50
    • Nguyen, D.1    Rocke, D.2
  • 9
    • 84984752407 scopus 로고    scopus 로고
    • Discovery of 830 candidate therapeutic targets and diagnostic markers for breast cancer using oligonucleotide microarray technology
    • M. Orr, A. Williams, L. Vogt, J. Boland, H. Yang, J. Cossman, and U. Scherf, “Discovery of 830 candidate therapeutic targets and diagnostic markers for breast cancer using oligonucleotide microarray technology,” Nature Publishing Group, Nature Genetics, vol. 27, pp. 77, no. supp, 2001
    • (2001) Nature Publishing Group, Nature Genetics , vol.27 , pp. 77
    • Orr, M.1    Williams, A.2    Vogt, L.3    Boland, J.4    Yang, H.5    Cossman, J.6    Scherf, U.7
  • 10
    • 0036324715 scopus 로고    scopus 로고
    • Proteomics and bioinformatics approaches for identification of serum biomarkers to detect breast cancer
    • J. Li, Z. Zhang, J. Rosenzweig, Y. Wang, and D. Chan, “Proteomics and bioinformatics approaches for identification of serum biomarkers to detect breast cancer,” Clin. Chem., vol. 48, no. 8, pp. 1296-1304, 2002.
    • (2002) Clin. Chem. , vol.48 , Issue.8 , pp. 1296-1304
    • Li, J.1    Zhang, Z.2    Rosenzweig, J.3    Wang, Y.4    Chan, D.5
  • 12
    • 0033028596 scopus 로고    scopus 로고
    • Systematic determination of genetic network architecture
    • S. Tavazoie, D. Hughes, M. Campbell, R. Cho, and G. Church, “Systematic determination of genetic network architecture,” Nat. Genet., vol. 22, no. 3, pp. 218-285, 1999.
    • (1999) Nat. Genet. , vol.22 , Issue.3 , pp. 218-285
    • Tavazoie, S.1    Hughes, D.2    Campbell, M.3    Cho, R.4    Church, G.5
  • 14
    • 1542303746 scopus 로고    scopus 로고
    • The local maximum clustering method and its application in microarray gene expression data analysis
    • W. Wu, Y. Chen, R. Bernard, and A. Yan, “The local maximum clustering method and its application in microarray gene expression data analysis,” EURASIP J. Appl. Signal Processing, vol. 2004, no. 1, pp. 53-63, 2004.
    • (2004) EURASIP J. Appl. Signal Processing , vol.2004 , Issue.1 , pp. 53-63
    • Wu, W.1    Chen, Y.2    Bernard, R.3    Yan, A.4
  • 16
    • 11144273669 scopus 로고
    • The preceptron: A probabilistic model for information storage and organization in the brain
    • F. Rosenblatt, “The preceptron: A probabilistic model for information storage and organization in the brain,” Psych. Rev., vol. 65, pp. 386-407, 1958.
    • (1958) Psych. Rev. , vol.65 , pp. 386-407
    • Rosenblatt, F.1
  • 17
    • 0033636139 scopus 로고    scopus 로고
    • Support vector machine classification and validation of cancer tissue samples using microarray expression data
    • T. Furey, N. Cristinanini, N. Duffy, D. Bednarski, M. Schmmer, and D. Haussler, “Support vector machine classification and validation of cancer tissue samples using microarray expression data,” Bioinformatics, vol. 16, no. 10, pp. 906-914, 2000.
    • (2000) Bioinformatics , vol.16 , Issue.10 , pp. 906-914
    • Furey, T.1    Cristinanini, N.2    Duffy, N.3    Bednarski, D.4    Schmmer, M.5    Haussler, D.6
  • 18
    • 0142192759 scopus 로고    scopus 로고
    • Neural network analysis of lymphoma microarray data: Prognosis and diagnosis near-perfect
    • M. O’Neill, and L. Song, “Neural network analysis of lymphoma microarray data: Prognosis and diagnosis near-perfect,” BMC Bioinformatics, vol. 4, no. 13, pp. 28-41, 2003.
    • (2003) BMC Bioinformatics , vol.4 , Issue.13 , pp. 28-41
    • O’Neill, M.1    Song, L.2
  • 19
    • 4043059734 scopus 로고    scopus 로고
    • A Bayesian network classification methodology for gene expression data
    • P. Helman, R. Veroff, S. Atlas, and C. Willman, “A Bayesian network classification methodology for gene expression data,” J. Computat. Biol., vol. 11, no. 4, pp. 581-615, 2004.
    • (2004) J. Computat. Biol. , vol.11 , Issue.4 , pp. 581-615
    • Helman, P.1    Veroff, R.2    Atlas, S.3    Willman, C.4
  • 20
    • 0033707946 scopus 로고    scopus 로고
    • Using Bayesian networks to analyze expression data
    • N. Friedman, M. Linial, I. Nachman, and D. Pe'er, “Using Bayesian networks to analyze expression data,” J. Computat. Biol., vol. 7, no. 3-4, pp. 601-620, 2000.
    • (2000) J. Computat. Biol. , vol.7 , Issue.3-4 , pp. 601-620
    • Friedman, N.1    Linial, M.2    Nachman, I.3    Pe'er, D.4
  • 21
    • 3242753580 scopus 로고    scopus 로고
    • Bayesian machine learning and its potential applications to the genomic study of oral oncology
    • P. Sebastiani, Y. Yu, and M. Ramoni, “Bayesian machine learning and its potential applications to the genomic study of oral oncology,” Advances Dental Res., vol. 17, no. 1, pp. 104-108, 2003.
    • (2003) Advances Dental Res. , vol.17 , Issue.1 , pp. 104-108
    • Sebastiani, P.1    Yu, Y.2    Ramoni, M.3
  • 22
    • 25144474549 scopus 로고    scopus 로고
    • Ensemble dependence model for classification and predication of cancer and normal gene expression data
    • P. Qiu, Z.J. Wang, and K.J.R. Liu, “Ensemble dependence model for classification and predication of cancer and normal gene expression data,” Bioinformatics, vol. 21, no. 14, pp. 3114-3121, 2005.
    • (2005) Bioinformatics , vol.21 , Issue.14 , pp. 3114-3121
    • Qiu, P.1    Wang, Z.J.2    Liu, K.J.R.3
  • 23
    • 85032766405 scopus 로고    scopus 로고
    • Dependence modeling and network for biomarker identification and cancer classification
    • P. Qiu, Z.J. Wang, and K.J.R. Liu, “Dependence modeling and network for biomarker identification and cancer classification,” in Proc. EUSIPCO, 2006.
    • (2006) Proc. EUSIPCO
    • Qiu, P.1    Wang, Z.J.2    Liu, K.J.R.3
  • 24
    • 17544364191 scopus 로고    scopus 로고
    • Optimal number of features as a function of sample size for various classification rules
    • J. Hua, Z. Xiong, J. Lowey, E. Suh, and E.R. Dougherty, “Optimal number of features as a function of sample size for various classification rules,” Bioinformatics, vol. 21, no. 8, pp. 1509-1515, 2005.
    • (2005) Bioinformatics , vol.21 , Issue.8 , pp. 1509-1515
    • Hua, J.1    Xiong, Z.2    Lowey, J.3    Suh, E.4    Dougherty, E.R.5
  • 25
    • 0037076322 scopus 로고    scopus 로고
    • Selection bias in gene extraction on the basis of microarray gene-expression data
    • C. Ambroise and G.J. McLachlan, “Selection bias in gene extraction on the basis of microarray gene-expression data,” in Proc. Nat. Academy Sci., vol. 99, no. 10, pp. 6562-6566, 2002.
    • (2002) Proc. Nat. Academy Sci. , vol.99 , Issue.10 , pp. 6562-6566
    • Ambroise, C.1    McLachlan, G.J.2
  • 27
    • 27744552855 scopus 로고    scopus 로고
    • Gene selection using logistic regressions based on AIC, BIC, and MDL criteria
    • X. Zhou, X. Wang, E. Dougherty, and S. Wong, “Gene selection using logistic regressions based on AIC, BIC, and MDL criteria,” New Mathematics and Natural Computation, vol. 1, no. 1 129-145, 2005.
    • (2005) New Mathematics and Natural Computation , vol.1 , Issue.1 , pp. 129-145
    • Zhou, X.1    Wang, X.2    Dougherty, E.3    Wong, S.4
  • 28
    • 15844413351 scopus 로고    scopus 로고
    • A comprehensive evaluation of multi-category classification methods for microarray gene expression cancer diagnosis
    • A. Statnikovl, C. Aliferis, I. Tsamardinos, D. Hardin, and S. Levy, “A comprehensive evaluation of multi-category classification methods for microarray gene expression cancer diagnosis,” Bioinformatics, vol. 21, no. 5, pp. 631-643, 2005.
    • (2005) Bioinformatics , vol.21 , Issue.5 , pp. 631-643
    • Statnikovl, A.1    Aliferis, C.2    Tsamardinos, I.3    Hardin, D.4    Levy, S.5
  • 29
    • 85032784120 scopus 로고    scopus 로고
    • Dependence network modeling for biomarker identification
    • accepted by Oct
    • P. Qiu, Z.J. Wang, and K.J.R. Liu, “Dependence network modeling for biomarker identification,” accepted by Bioinformatics, Oct, 2006.
    • (2006) Bioinformatics
    • Qiu, P.1    Wang, Z.J.2    Liu, K.J.R.3
  • 30
    • 33645804629 scopus 로고    scopus 로고
    • Polynomial model approach for resynchronization analysis of cell-cycle gene expression data
    • P. Qiu, Z.J. Wang, and K.J.R. Liu, “Polynomial model approach for resynchronization analysis of cell-cycle gene expression data,” Bioinformatics, vol. 22, no. 8, pp. 959-966, 2006.
    • (2006) Bioinformatics , vol.22 , Issue.8 , pp. 959-966
    • Qiu, P.1    Wang, Z.J.2    Liu, K.J.R.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.