메뉴 건너뛰기




Volumn 9, Issue SUPPL. 1, 2008, Pages

Improving prediction accuracy of tumor classification by reusing genes discarded during gene selection

Author keywords

[No Author keywords available]

Indexed keywords

ACCURACY; ANALYTIC METHOD; ARTICLE; ARTIFICIAL NEURAL NETWORK; BIOINFORMATICS; BREAST CANCER; COLON CANCER; CONTROLLED STUDY; GENE EXPRESSION PROFILING; GENETIC ALGORITHM; GENETIC SELECTION; INTERMETHOD COMPARISON; LEUKEMIA; MATHEMATICAL ANALYSIS; MICROARRAY ANALYSIS; OVARY CANCER; PREDICTION; TUMOR CLASSIFICATION; ALGORITHM; BIOLOGY; CLASSIFICATION; COMPARATIVE STUDY; DNA MICROARRAY; FORECASTING; GENETICS; METHODOLOGY; NEOPLASM;

EID: 44449113335     PISSN: None     EISSN: 14712164     Source Type: Journal    
DOI: 10.1186/1471-2164-9-S1-S3     Document Type: Article
Times cited : (23)

References (25)
  • 1
    • 0033569406 scopus 로고    scopus 로고
    • Molecular classification of Cancer: Class Discovery and Class Prediction by Gene Expression
    • Golub T Slonim D Tamayo P Molecular classification of Cancer: Class Discovery and Class Prediction by Gene Expression Bioinformatics & Computational Biology 1999, 286:531-537
    • (1999) Bioinformatics & Computational Biology , vol.286 , pp. 531-537
    • Golub, T.1    Slonim, D.2    Tamayo, P.3
  • 2
    • 0033536012 scopus 로고    scopus 로고
    • Broad Patterns of Gene Expression Revealed by Clustering Analysis of Tumor and Normal Colon Tissues Probed by Oligonucleotide Arrays
    • 10.1073/pnas.96.12.6745 10359783 21986
    • Alon U Broad Patterns of Gene Expression Revealed by Clustering Analysis of Tumor and Normal Colon Tissues Probed by Oligonucleotide Arrays Proceedings of the National Academy of Sciences of the United States of America 1999, 6745-6750 10.1073/pnas.96.12.6745 10359783 21986
    • (1999) Proceedings of the National Academy of Sciences of the United States of America , pp. 6745-6750
    • Alon, U.1
  • 3
    • 0036489046 scopus 로고    scopus 로고
    • Comparison of Discrimination Methods for the classification of Tumors Using Gene Expression Data
    • 10.1198/016214502753479248
    • Dudoit S Fridlyand J Speed T Comparison of Discrimination Methods for the classification of Tumors Using Gene Expression Data Journal of the American Statistical Association 2002, 457:77-87 10.1198/ 016214502753479248
    • (2002) Journal of the American Statistical Association , vol.457 , pp. 77-87
    • Dudoit, S.1    Fridlyand, J.2    Speed, T.3
  • 4
    • 0036161259 scopus 로고    scopus 로고
    • Gene Selection for Cancer classification Using Support Vector Machines
    • 10.1023/A:1012487302797
    • Guyon I Weston J Barnhill S Vapnik V Gene Selection for Cancer classification Using Support Vector Machines Machine Learning 2002, 46:389-422 10.1023/A:1012487302797
    • (2002) Machine Learning , vol.46 , pp. 389-422
    • Guyon, I.1    Weston, J.2    Barnhill, S.3    Vapnik, V.4
  • 5
    • 33745561205 scopus 로고    scopus 로고
    • An Introduction to Variable and Feature Selection
    • 10.1162/153244303322753616
    • Guyon I Elisseeff A An Introduction to Variable and Feature Selection Journal of machine learning research 2003, 3:1157-1182 10.1162/ 153244303322753616
    • (2003) Journal of Machine Learning Research , vol.3 , pp. 1157-1182
    • Guyon, I.1    Elisseeff, A.2
  • 6
    • 17044405923 scopus 로고    scopus 로고
    • Toward Integrating Feature Selection Algorithms for classification and Clustering
    • 10.1109/TKDE.2005.41
    • Liu H Yu L Toward Integrating Feature Selection Algorithms for classification and Clustering IEEE Transactions on Knowledge and Data Engineering 2005, 17(3):1-12 10.1109/TKDE.2005.41
    • (2005) IEEE Transactions on Knowledge and Data Engineering , vol.17 , Issue.3 , pp. 1-12
    • Liu, H.1    Yu, L.2
  • 8
    • 0031189914 scopus 로고    scopus 로고
    • Multitask Learning
    • Caruana R Multitask Learning Machine Learning 1997, 28:41-75 10.1023/ A:1007379606734
    • (1997) Machine Learning , vol.28 , pp. 41-75
    • Caruana, R.1
  • 9
    • 2942734703 scopus 로고    scopus 로고
    • Benefiting from the variables that variable selection discards
    • 10.1162/153244303322753652
    • Caruana R de Sa VR Benefiting from the variables that variable selection discards Journal of machine learning research 2003, 3:1245-1264 10.1162/ 153244303322753652
    • (2003) Journal of Machine Learning Research , vol.3 , pp. 1245-1264
    • Caruana, R.1    de Sa, V.R.2
  • 13
    • 0032028297 scopus 로고    scopus 로고
    • Feature Subset Selection Using a Genetic Algorithm
    • 10.1109/5254.671091
    • Yang J Honavar V Feature Subset Selection Using a Genetic Algorithm IEEE Intelligent Systems 1998, 13:44-49 http://citeseer.ist.psu.edu/ yang98feature.html 10.1109/5254.671091
    • (1998) IEEE Intelligent Systems , vol.13 , pp. 44-49
    • Yang, J.1    Honavar, V.2
  • 14
    • 33845734163 scopus 로고    scopus 로고
    • Improving Generalization Ability of Neural Networks Ensemble with Multi-Task Learning
    • Li GZ Liu TY Improving Generalization Ability of Neural Networks Ensemble with Multi-Task Learning Journal of Computational Information Systems 2006, 2(4):1235-1239
    • (2006) Journal of Computational Information Systems , vol.2 , Issue.4 , pp. 1235-1239
    • Li, G.Z.1    Liu, T.Y.2
  • 15
    • 25144492516 scopus 로고    scopus 로고
    • Eficient Feature Selection Via Analysis of Relevance and Redundancy
    • Oct
    • Yu L Liu H Eficient Feature Selection Via Analysis of Relevance and Redundancy Journal of Machine Learning Research 2004, 5:OCt 1205-1224
    • (2004) Journal of Machine Learning Research , vol.5 , pp. 1205-1224
    • Yu, L.1    Liu, H.2
  • 16
    • 0033640901 scopus 로고    scopus 로고
    • Comparison of Algorithms that Select Features for Pattern classifiers
    • 10.1016/S0031-3203(99)00041-2
    • Kudo M Sklansky J Comparison of Algorithms that Select Features for Pattern classifiers Pattern Recognition 2000, 33:25-41 10.1016/ S0031-3203(99)00041-2
    • (2000) Pattern Recognition , vol.33 , pp. 25-41
    • Kudo, M.1    Sklansky, J.2
  • 17
    • 0000513303 scopus 로고
    • Principled Architecture Selection for Neural Networks: Application to Corporate Bond Rating Prediction
    • Morgan Kaufmann Publishers, Inc. Edited by Moody JE, Hanson SJ, Lippmann RP
    • Moody J Utans J Principled Architecture Selection for Neural Networks: Application to Corporate Bond Rating Prediction Advances in Neural Information Processing Systems Morgan Kaufmann Publishers, Inc. Edited by Moody JE, Hanson SJ, Lippmann RP 1992, 683-690
    • (1992) Advances in Neural Information Processing Systems , pp. 683-690
    • Moody, J.1    Utans, J.2
  • 25
    • 25444463295 scopus 로고    scopus 로고
    • Feature Selection and Nearest Centroid classification for Protein Mass Spectrometry
    • 1274262 15788095 10.1186/1471-2105-6-68
    • Levner I Feature Selection and Nearest Centroid classification for Protein Mass Spectrometry BMC Bioinformatics 2005, 6:68 1274262 15788095 10.1186/1471-2105-6-68
    • (2005) BMC Bioinformatics , vol.6 , pp. 68
    • Levner, I.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.