-
1
-
-
84891014181
-
-
T. Schrader, A. D. Hamilton, ed. Wiley-VCH: Weinheim, Germany, p 45-109
-
For reviews, see: A. P. Davis, and T. D. James, in Functional Synthetic Receptors, ed., T. Schrader, A. D. Hamilton, ed. Wiley-VCH: Weinheim, Germany, 2005, p 45-109
-
(2005)
Functional Synthetic Receptors, Ed.
-
-
Davis, A.P.1
James In, T.D.2
-
4
-
-
46649091779
-
-
For some recent examples of carbohydrate receptors operating through noncovalent interactions, see: -1017
-
M. Mazik ChemBioChem. 2008 9 1015 1017
-
(2008)
ChemBioChem.
, vol.9
, pp. 1015
-
-
Mazik, M.1
-
24
-
-
53049098522
-
-
Another strategy, which has been employed for the design of synthetic carbohydrate receptors, involves exploitation of non-natural bonding interactions; this strategy relies on the reversible formation of covalent bonds from diol units and boronic acid. For reviews, see: -7450
-
M. Mazik A. Hartmann J. Org. Chem. 2008 73 7444 7450
-
(2008)
J. Org. Chem.
, vol.73
, pp. 7444
-
-
Mazik, M.1
Hartmann, A.2
-
30
-
-
33749117446
-
-
Kluwer Academic Publishers: Dordrecht, The Netherlands
-
H. Lis, and N. Sharon, Lectins, Kluwer Academic Publishers: Dordrecht, The Netherlands, 2003
-
(2003)
Lectins
-
-
Lis, H.1
Sharon, N.2
-
35
-
-
0025754301
-
-
For examples of selective oligosaccharide binding by receptors using noncovalent interactions, see references 3b, 3g-i, 3q, and: -5219
-
S. P. Spurlino G.-Y. Lu F. A. Quiocho J. Biol. Chem 1991 266 5202 5219
-
(1991)
J. Biol. Chem
, vol.266
, pp. 5202
-
-
Spurlino, S.P.1
Lu, G.-Y.2
Quiocho, F.A.3
-
38
-
-
2242468454
-
-
(Angew. Chem. 2002, 114, 4267-4270) -4096
-
G. Lecollinet A. P. Dominey T. Velasco A. P. Davis Angew. Chem., Int. Ed. 2002 41 4093 4096
-
(2002)
Angew. Chem., Int. Ed.
, vol.41
, pp. 4093
-
-
Lecollinet, G.1
Dominey, A.P.2
Velasco, T.3
Davis, A.P.4
-
44
-
-
4644284611
-
-
For complexation studies between anions and carbohydrate models, including di- and monosaccharides, see: -10260
-
Y.-Q. Chen X.-Z. Wang X.-B. Shao J.-L. Hou X.-Z. Chen X.-K. Jiang Z.-T. Li Tetrahedron 2004 60 10253 10260
-
(2004)
Tetrahedron
, vol.60
, pp. 10253
-
-
Chen, Y.-Q.1
Wang, X.-Z.2
Shao, X.-B.3
Hou, J.-L.4
Chen, X.-Z.5
Jiang, X.-K.6
Li, Z.-T.7
-
46
-
-
0001315363
-
-
A number of studies have demonstrated that artificial multivalent carbohydrate ligands possess high affinities for specific carbohydrate-binding proteins. For examples of such oligosaccharide-based ligands, see: -1435
-
J. M. Coterón F. Hacket H.-J. Schneider J. Org. Chem. 1996 61 1429 1435
-
(1996)
J. Org. Chem.
, vol.61
, pp. 1429
-
-
Coterón, J.M.1
Hacket, F.2
Schneider, H.-J.3
-
48
-
-
0000856193
-
-
For examples of oligosaccharide-based model systems for studying carbohydrate-carbohydrate interactions, see: -235
-
T. K. Lindhorst Top. Curr. Chem. 2002 218 201 235
-
(2002)
Top. Curr. Chem.
, vol.218
, pp. 201
-
-
Lindhorst, T.K.1
-
55
-
-
0034603185
-
-
It should be also noted that triethylbenzene scaffold has been extensively used for the construction of receptors for cations and anions, as well as boronic-acid based receptors. For a review, see: -554
-
M. Mazik H. Bandmann W. Sicking Angew. Chem., Int. Ed. 2000 39 551 554
-
(2000)
Angew. Chem., Int. Ed.
, vol.39
, pp. 551
-
-
Mazik, M.1
Bandmann, H.2
Sicking, W.3
-
56
-
-
0001537292
-
-
Oximes have received far less attention in supramolecular chemistry than other compounds such as carboxylic acids and amides. For some examples, see: -2224
-
G. Hennrich E. V. Anslyn Chem.-Eur. J. 2002 8 2219 2224
-
(2002)
Chem.-Eur. J.
, vol.8
, pp. 2219
-
-
Hennrich, G.1
Anslyn, E.V.2
-
64
-
-
0034160975
-
-
In the area of sugar recognition the biphenyl-unit has mostly been used as a building block for macrocyclic receptors. Particularly interesting biphenyl-based macrocyclic architecture was designed by Davis and co-workers. The recognition properties of a series of tricyclic oligoamides have been explored in organic solvents, in two-phase systems, and in water (see references 12a-d). A related macrotricyclic receptor featuring two 1,1′-biphenyl platforms linked by amide bridges was designed by molecular modeling by Diederich and coworkers (see reference 12e).
-
A. W. Marsman C. A. van Walree R. W. A. Havenith L. W. Jenneskens M. Lutz A. L. Spek E. T. G. Lutz J. H. van der Maas J. Chem. Soc. Perkin Trans 2 2000 501
-
(2000)
J. Chem. Soc. Perkin Trans 2
, pp. 501
-
-
Marsman, A.W.1
Van Walree, C.A.2
Havenith, R.W.A.3
Jenneskens, L.W.4
Lutz, M.5
Spek, A.L.6
Lutz, E.T.G.7
Van Der Maas, J.H.8
-
69
-
-
0037260450
-
-
Anslyn an co-workers have exploited the 2-aminopyridine unit for binding of cyclohexane diols and triols. The authors used this unit to mimic the hydrogen-bonding motifs formed by the asparagine side chain in the complexes of arabinose-binding protein with monosaccharides. See: -562
-
R. Welti Y. Abel V. Gramlich F. Diederich Helv. Chim. Acta. 2003 86 548 562
-
(2003)
Helv. Chim. Acta.
, vol.86
, pp. 548
-
-
Welti, R.1
Abel, Y.2
Gramlich, V.3
Diederich, F.4
-
71
-
-
0003455624
-
-
Pergamon: Amsterdam, The Netherlands, p. 178
-
The second methyl group at the 4-position of the pyridine ring should favorably increase the basicity of the pyridine moiety, see: A. R. Katritzky, A. F. Pozharski, Handbook of Heterocyclic Chemistry Pergamon: Amsterdam, The Netherlands, 2000, p. 178
-
(2000)
Handbook of Heterocyclic Chemistry
-
-
Katritzky, A.R.1
Pozharski, A.F.2
-
72
-
-
0004325424
-
-
University of Pittsburgh: Pittsburgh, PA, Hostest program is designed to fit data to different binding models, which include both "pure" binding models, taking into consideration the formation of only one type of complex in solution (1: 1, 1: 2 or 2: 1 receptor-substrate complex), and "mixed" binding models containing more than one type of complex in solution (for example, 1: 1 and 1: 2 or 1: 1 and 2: 1 receptor-substrate binding stoichiometry)
-
C. S. Wilcox, and N. M. Glagovich, Program HOSTEST 5.6 University of Pittsburgh: Pittsburgh, PA, 1994
-
(1994)
Program HOSTEST 5.6
-
-
Wilcox, C.S.1
Glagovich, N.M.2
-
76
-
-
33748716824
-
-
H. Tsukube, H. Furuta, A. Odani, Y. Takeda, Y. Kudo, Y. Inoue, Y. Liu, H. Sakamoto, and K. Kimura, in Comprehensive Supramolecular Chemistry, J. L. Atwood, J. E. D. Davis, D. D. MacNicol, F. Vögtle, Ed.; Pergamon: Oxford, UK, 1996; Vol. 8, p 425
-
(1996)
Comprehensive Supramolecular Chemistry
-
-
Tsukube, H.1
Furuta, H.2
Odani, A.3
Takeda, Y.4
Kudo, Y.5
Inoue, Y.6
Liu, Y.7
Sakamoto, H.8
Kimura In, K.9
-
77
-
-
0034682859
-
-
a estimation was < 10% For some discussions on the importance of carbohydrate-aromatic interactions, see: -6170
-
L. Fielding Tetrahedron 2000 56 6151 6170
-
(2000)
Tetrahedron
, vol.56
, pp. 6151
-
-
Fielding, L.1
-
79
-
-
27944482492
-
-
-7074
-
M. I. Chávez C. Andreu P. Vidal N. Aboitiz F. Freire P. Groves J. L. Asensio G. Asensio M. Muraki F. J. Caada J. Jiménez-Barbero Chem.-Eur. J. 2005 11 7060 7074
-
(2005)
Chem.-Eur. J.
, vol.11
, pp. 7060
-
-
Chávez, M.I.1
Andreu, C.2
Vidal, P.3
Aboitiz, N.4
Freire, F.5
Groves, P.6
Asensio, J.L.7
Asensio, G.8
Muraki, M.9
Caada, F.J.10
Jiménez-Barbero, J.11
-
80
-
-
34250864406
-
-
-3648
-
J. Screen E. C. Stanca-Kaposta D. P. Gamblin B. Liu N. A. Macleod L. C. Snoek B. G. Davis J. P. Simons Angew. Chem., Int. Ed. 2007 46 3644 3648
-
(2007)
Angew. Chem., Int. Ed.
, vol.46
, pp. 3644
-
-
Screen, J.1
Stanca-Kaposta, E.C.2
Gamblin, D.P.3
Liu, B.4
MacLeod, N.A.5
Snoek, L.C.6
Davis, B.G.7
Simons, J.P.8
-
82
-
-
0031901440
-
-
For examples of CH-π interactions in the crystal structures of the complexes formed between artificial receptors and carbohydrates, see reference 9a -657
-
J. C. Morales S. Penadés Angew. Chem., Int. Ed. 1998 37 654 657
-
(1998)
Angew. Chem., Int. Ed.
, vol.37
, pp. 654
-
-
Morales, J.C.1
Penadés, S.2
|