-
1
-
-
33749117446
-
-
Kluwer Academic Publishers, Dordrecht, The Netherlands
-
H. Lis and N. Sharon, Lectins, Kluwer Academic Publishers, Dordrecht, The Netherlands, 2003
-
(2003)
Lectins
-
-
Lis, H.1
Sharon, N.2
-
9
-
-
84891014181
-
-
T. Schrader and A. D. Hamilton, Wiley-VCH, Weinheim, Germany, pp. 45-109
-
A. P. Davis and T. D. James, in Functional Synthetic Receptors, ed., T. Schrader, and, A. D. Hamilton, Wiley-VCH, Weinheim, Germany, 2005, pp. 45-109
-
(2005)
Functional Synthetic Receptors, Ed.
-
-
Davis, A.P.1
James In, T.D.2
-
10
-
-
0000884713
-
-
For reviews on boronic acid based receptors, using covalent interactions for sugar binding, see: -2996
-
A. P. Davis R. S. Wareham Angew. Chem., Int. Ed. 1999 38 2979 2996
-
(1999)
Angew. Chem., Int. Ed.
, vol.38
, pp. 2979
-
-
Davis, A.P.1
Wareham, R.S.2
-
12
-
-
0001679632
-
-
For some recent examples of carbohydrate receptors operating through noncovalent interactions (earlier examples are given in ref. 2a and b), see ref. 5a-l and: -2050 -1922
-
T. D. James K. R. A. S. Sandanayake S. Shinkai Angew. Chem. 1996 108 2038 2050 Angew. Chem., Int. Ed. 1996 35 1910 1922
-
(1996)
Angew. Chem.
, vol.108
, pp. 2038
-
-
James, T.D.1
Sandanayake, K.R.A.S.2
Shinkai, S.3
-
18
-
-
0037981568
-
-
-2305
-
T. Ishi-I M. A. Mateos-Timoneda P. Timmerman M. Crego-Calama D. N. Reinhoudt S. Shinkai Angew. Chem., Int. Ed. 2003 42 2300 2305
-
(2003)
Angew. Chem., Int. Ed.
, vol.42
, pp. 2300
-
-
Ishi-I, T.1
Mateos-Timoneda, M.A.2
Timmerman, P.3
Crego-Calama, M.4
Reinhoudt, D.N.5
Shinkai, S.6
-
49
-
-
0034603185
-
-
Our previous binding studies showed that 2-aminopyridines provide an excellent structural motif for binding carbohydrates, associated with the ability to form cooperative and bidentate hydrogen bonds with the sugar OH groups, see ref. 5g,j-o Anslyn and co-workers have exploited the 2-aminopyridine unit for binding of cyclohexane diols and triols. See: -554
-
M. Mazik H. Bandmann W. Sicking Angew. Chem., Int. Ed. 2000 39 551 554
-
(2000)
Angew. Chem., Int. Ed.
, vol.39
, pp. 551
-
-
Mazik, M.1
Bandmann, H.2
Sicking, W.3
-
50
-
-
0000970872
-
-
Oximes have received far less attention in supramolecular chemistry than other compounds such as carboxylic acids and amides. For some examples, see: -2792
-
C. Y. Huang L. A. Cabell E. V. Anslyn J. Am. Chem. Soc. 1994 116 2778 2792
-
(1994)
J. Am. Chem. Soc.
, vol.116
, pp. 2778
-
-
Huang, C.Y.1
Cabell, L.A.2
Anslyn, E.V.3
-
58
-
-
0034160975
-
-
For recent discussions on the importance of carbohydrate-aromatic interactions, see:
-
A. W. Marsman C. A. van Walree R. W. A. Havenith L. W. Jenneskens M. Lutz A. L. Spek E. T. G. Lutz J. H. van der Maas J. Chem. Soc., Perkin Trans. 2 2000 501
-
(2000)
J. Chem. Soc., Perkin Trans. 2
, pp. 501
-
-
Marsman, A.W.1
Van Walree, C.A.2
Havenith, R.W.A.3
Jenneskens, L.W.4
Lutz, M.5
Spek, A.L.6
Lutz, E.T.G.7
Van Der Maas, J.H.8
-
60
-
-
27944482492
-
-
For examples of CH-π interactions in the crystal structures of the complexes formed between artificial receptors and carbohydrates, see ref. 5j. Quiocho has shown that the hydrogen bonds between sugar-binding proteins and essential recognition determinants on sugars are shielded from bulk solvent, meaning that they exist in a lower dielectric environment.1b Thus, investigations with synthetic receptors in organic media (see also ref. 12) can make an important contribution to our understanding of the complex carbohydrate binding processes in nature. Many biological interactions occur in enzyme pockets or in membranes, meaning that they occur in an environment with a lower dielectric constant relative to the bulk solvent. For this reason, many theoretical studies on different enzyme model systems have been performed in a medium with a lower dielectric constant (mostly ε = 5.7, corresponding to the chlorobenzene). See, for example: -7074
-
M. I. Chávez C. Andreu P. Vidal N. Aboitiz F. Freire P. Groves J. L. Asensio G. Asensio M. Muraki F. J. Caňada J. Jiménez-Barbero Chem.-Eur. J. 2005 11 7060 7074
-
(2005)
Chem.-Eur. J.
, vol.11
, pp. 7060
-
-
Chávez, M.I.1
Andreu, C.2
Vidal, P.3
Aboitiz, N.4
Freire, F.5
Groves, P.6
Asensio, J.L.7
Asensio, G.8
Muraki, M.9
Caňada, F.J.10
Jiménez-Barbero, J.11
-
63
-
-
29444460328
-
-
Recognition of neutral sugars in aqueous solution through noncovalent interactions remains an important challenge in artificial receptor chemistry; for some examples, see ref. 4m, 4v, 5h and: -11057
-
S. P. de Visser J. Phys. Chem. A 2005 109 11050 11057
-
(2005)
J. Phys. Chem. A
, vol.109
, pp. 11050
-
-
De Visser, S.P.1
-
71
-
-
42349104679
-
-
12 For a review discussing the limitations of the NMR method, see:
-
12
-
-
-
-
72
-
-
0034682859
-
-
Intramolecular hydrogen bonds may drastically reduce the binding affinity of receptors; for some examples, see ref. 5k and: -6170
-
L. Fielding Tetrahedron 2000 56 6151 6170
-
(2000)
Tetrahedron
, vol.56
, pp. 6151
-
-
Fielding, L.1
-
74
-
-
42349108810
-
-
a estimation was < 10% For examples of selective disaccharide binding by macrocyclic receptors using noncovalent interactions, see ref. 4u and:
-
a estimation was < 10%
-
-
-
-
75
-
-
0002670428
-
-
For examples of boronic acid-based receptors for oligosaccharides, see ref. 3a and reviews: -1494
-
U. Neidlein F. Diederich Chem. Commun. 1996 1493 1494
-
(1996)
Chem. Commun.
, pp. 1493
-
-
Neidlein, U.1
Diederich, F.2
-
77
-
-
0034619276
-
-
A number of studies have demonstrated that artificial multivalent carbohydrate ligands possess high affinities for specific carbohydrate-binding proteins. For examples of such oligosaccharide-based ligands, see: -3184
-
J. H. Hartley T. D. James C. J. Ward J. Chem. Soc., Perkin Trans. 1 2000 3155 3184
-
(2000)
J. Chem. Soc., Perkin Trans. 1
, pp. 3155
-
-
Hartley, J.H.1
James, T.D.2
Ward, C.J.3
-
79
-
-
0000856193
-
-
For examples of oligosaccharide-based model systems for studying carbohydrate-carbohydrate interactions, see: -235
-
T. K. Lindhorst Top. Curr. Chem. 2002 218 201 235
-
(2002)
Top. Curr. Chem.
, vol.218
, pp. 201
-
-
Lindhorst, T.K.1
|