메뉴 건너뛰기




Volumn 50, Issue 6, 2008, Pages 911-926

Classification with high-dimensional genetic data: Assigning patients and genetic features to known classes

Author keywords

Bioinformaties; Discrimination; Gene expression; Genetics; Microarray; SNP supervised learning

Indexed keywords

GENE EXPRESSION;

EID: 57649225876     PISSN: 03233847     EISSN: 15214036     Source Type: Journal    
DOI: 10.1002/bimj.200810475     Document Type: Article
Times cited : (18)

References (77)
  • 2
    • 0037076322 scopus 로고    scopus 로고
    • Selection bias in gene extraction on the basis of microarray gene-expression data
    • Ambroise, C. and McLachlan, G. (2002). Selection bias in gene extraction on the basis of microarray gene-expression data. Proceedings of the National Academy of Sciences 99, 6562-6566.
    • (2002) Proceedings of the National Academy of Sciences , vol.99 , pp. 6562-6566
    • Ambroise, C.1    McLachlan, G.2
  • 3
    • 0036372855 scopus 로고    scopus 로고
    • New feature subset selection procedures for classification of expression profiles
    • RESEARCH0017
    • Bo, T. and Jonassen, I. (2002). New feature subset selection procedures for classification of expression profiles. Genome Biology 3, RESEARCH0017.
    • (2002) Genome Biology , vol.3
    • Bo, T.1    Jonassen, I.2
  • 5
    • 33846515112 scopus 로고    scopus 로고
    • Partial least squares: A versatile tool for the analysis of high-dimensional genomic data
    • Boulesteix, A.-L. and Strimmer, K. (2007). Partial least squares: a versatile tool for the analysis of high-dimensional genomic data. Briefings in Bioinformatics 8, 32-44.
    • (2007) Briefings in Bioinformatics , vol.8 , pp. 32-44
    • Boulesteix, A.-L.1    Strimmer, K.2
  • 6
    • 48249110665 scopus 로고    scopus 로고
    • Microarray-based classification and clinical predictors: On combined classifiers and additional predictive value
    • Boulesteix, A.-L., Porzelius, C., and Daumer, M. (2008). Microarray-based classification and clinical predictors: on combined classifiers and additional predictive value. Bioinformatics 24, 1698-1706.
    • (2008) Bioinformatics , vol.24 , pp. 1698-1706
    • Boulesteix, A.-L.1    Porzelius, C.2    Daumer, M.3
  • 7
    • 0030211964 scopus 로고    scopus 로고
    • Bagging predictors
    • Breiman, L. (1996). Bagging predictors. Machine Learning 26, 123-140.
    • (1996) Machine Learning , vol.26 , pp. 123-140
    • Breiman, L.1
  • 9
    • 0035478854 scopus 로고    scopus 로고
    • Random Forests
    • Breiman, L. (2001). Random Forests. Machine Learning 45, 5-32.
    • (2001) Machine Learning , vol.45 , pp. 5-32
    • Breiman, L.1
  • 12
    • 41549141939 scopus 로고    scopus 로고
    • Boosting algorithms: Regularization, prediction and model fitting
    • With discussion
    • Bühlmann, P. and Hothorn, T. (2007). Boosting algorithms: regularization, prediction and model fitting. Statistical Science 22, 477-505. With discussion.
    • (2007) Statistical Science , vol.22 , pp. 477-505
    • Bühlmann, P.1    Hothorn, T.2
  • 14
    • 85153200676 scopus 로고    scopus 로고
    • Bureau, A., Dupuis, J., Falls, K., Lunetta, K. L., Hayward, B., Keith, T. P., and van Eerdewegh, P. (2005). Identifying SNPs predictive of phenotype using Random Forests. Genetic Epidemiology 28, 171-1 82.
    • Bureau, A., Dupuis, J., Falls, K., Lunetta, K. L., Hayward, B., Keith, T. P., and van Eerdewegh, P. (2005). Identifying SNPs predictive of phenotype using Random Forests. Genetic Epidemiology 28, 171-1 82.
  • 15
    • 3342991601 scopus 로고    scopus 로고
    • Gene selection and classification from microarray data using kernel machine
    • Cho, J. H., Lee, D., Park, J. H., and Lee, I. B. (2004). Gene selection and classification from microarray data using kernel machine. FEBS Letters 571, 93-98.
    • (2004) FEBS Letters , vol.571 , pp. 93-98
    • Cho, J.H.1    Lee, D.2    Park, J.H.3    Lee, I.B.4
  • 17
    • 12344294601 scopus 로고    scopus 로고
    • BagBoosting for tumor classification with gene expression data
    • Dettling, M. (2004). BagBoosting for tumor classification with gene expression data. Bioinformatics 20,3583-3593.
    • (2004) Bioinformatics , vol.20 , pp. 3583-3593
    • Dettling, M.1
  • 18
    • 0038391397 scopus 로고    scopus 로고
    • Boosting for tumor classification with gene expression data
    • Dettling, M. and Bühlmann (2003). Boosting for tumor classification with gene expression data. Bioinformatics 19, 1061-1069.
    • (2003) Bioinformatics , vol.19 , pp. 1061-1069
    • Dettling, M.1    Bühlmann2
  • 19
    • 30644464444 scopus 로고    scopus 로고
    • Gene selection and classification of microarray data using Random Forest
    • Diaz-Uriarte, R. and Alvarez de Andres, S. (2006). Gene selection and classification of microarray data using Random Forest. BMC Bioinformatics 7, 3.
    • (2006) BMC Bioinformatics , vol.7 , pp. 3
    • Diaz-Uriarte, R.1    Alvarez de Andres, S.2
  • 20
    • 17644384367 scopus 로고    scopus 로고
    • Minimum redundancy feature selection from microarray gene expression data
    • Ding, C. and Peng, H. (2005). Minimum redundancy feature selection from microarray gene expression data. Journal of Bioinformatics and Computational Biology 3, 185-205.
    • (2005) Journal of Bioinformatics and Computational Biology , vol.3 , pp. 185-205
    • Ding, C.1    Peng, H.2
  • 21
    • 0038391443 scopus 로고    scopus 로고
    • Bagging to improve the accuracy ofa clustering procedure
    • Dudoit, S. and Fridlyand, J. (2003). Bagging to improve the accuracy ofa clustering procedure. Bioinformatics 19, 1090-1099.
    • (2003) Bioinformatics , vol.19 , pp. 1090-1099
    • Dudoit, S.1    Fridlyand, J.2
  • 23
    • 0036489046 scopus 로고    scopus 로고
    • Comparison of discrimination methods for the classification of tumors using gene expression data
    • Dudoit, S., Fridlyand, J., and Speed, T. (2002). Comparison of discrimination methods for the classification of tumors using gene expression data. Journal of the American Statistical Association 97, 77-87.
    • (2002) Journal of the American Statistical Association , vol.97 , pp. 77-87
    • Dudoit, S.1    Fridlyand, J.2    Speed, T.3
  • 24
    • 0043203327 scopus 로고    scopus 로고
    • Multiple hypothesis testing in microarray experiments
    • Dudoit, S., Shaffer, J. P., and Boldrick, J. C. (2003). Multiple hypothesis testing in microarray experiments. Statistical Science 18,71-103.
    • (2003) Statistical Science , vol.18 , pp. 71-103
    • Dudoit, S.1    Shaffer, J.P.2    Boldrick, J.C.3
  • 25
    • 0034863834 scopus 로고    scopus 로고
    • Classification of microarray data with penalized logistic regression
    • Bittner, M. L, Chen, Y, Dorsel, A. N, and Dougherty, E. R, Eds
    • Eilers, P. H., Boer, J. M., van Ommen, G. J., and van Houwelingen, H. C. (2001). Classification of microarray data with penalized logistic regression. In Bittner, M. L., Chen, Y., Dorsel, A. N., and Dougherty, E. R. (Eds.), Proceedings of SPIE, volume 4266, pp. 187-198.
    • (2001) Proceedings of SPIE , vol.4266 , pp. 187-198
    • Eilers, P.H.1    Boer, J.M.2    van Ommen, G.J.3    van Houwelingen, H.C.4
  • 26
    • 0003909532 scopus 로고
    • Discriminatory analysis - nonparametric discrimination: Consistency properties
    • Technical report, USAF School ofAviation Medicine
    • Fix, E. and Hodges, J. L. (1951). Discriminatory analysis - nonparametric discrimination: consistency properties. Technical report, USAF School ofAviation Medicine.
    • (1951)
    • Fix, E.1    Hodges, J.L.2
  • 29
    • 0034164230 scopus 로고    scopus 로고
    • Additive logistic regression: A statistical view of boosting
    • With discussion
    • Friedman, J., Hastie, T., and Tibshirani, R. (2000). Additive logistic regression: a statistical view of boosting. The Annals of Statistics 28, 337-407. With discussion.
    • (2000) The Annals of Statistics , vol.28 , pp. 337-407
    • Friedman, J.1    Hastie, T.2    Tibshirani, R.3
  • 30
    • 0033636139 scopus 로고    scopus 로고
    • Support vector machine classification and validation of cancer tissue samples using microarray expression data
    • Furey, T. S., Cristianini, N., Duffy, N., Bednarski, D. W., Schummer, M., and Haussler, D. (2000). Support vector machine classification and validation of cancer tissue samples using microarray expression data. Bioinformatics 16, 906-914.
    • (2000) Bioinformatics , vol.16 , pp. 906-914
    • Furey, T.S.1    Cristianini, N.2    Duffy, N.3    Bednarski, D.W.4    Schummer, M.5    Haussler, D.6
  • 31
    • 2942602999 scopus 로고    scopus 로고
    • Entropy-based gene ranking without selection bias for the predictive classification ofmicroarray data
    • Furlanello, C., Serafini, M., Merler, S., and Jurman, G. (2003). Entropy-based gene ranking without selection bias for the predictive classification ofmicroarray data. BMC Bioinformatics 4, 54.
    • (2003) BMC Bioinformatics , vol.4 , pp. 54
    • Furlanello, C.1    Serafini, M.2    Merler, S.3    Jurman, G.4
  • 33
    • 33845413755 scopus 로고    scopus 로고
    • Regularized linear discriminant analysis and its application in microarrays
    • Guo, Y., Hastie, T., and Tibshirani, R. (2007). Regularized linear discriminant analysis and its application in microarrays. Biostatistics 8, 86-100.
    • (2007) Biostatistics , vol.8 , pp. 86-100
    • Guo, Y.1    Hastie, T.2    Tibshirani, R.3
  • 34
    • 0036161259 scopus 로고    scopus 로고
    • Gene selection for cancer classification using support vector machines
    • Guyon, I., Weston, J., Bamhill, S., and Vapnik, V. (2002). Gene selection for cancer classification using support vector machines. Machine Learning 46, 389-422.
    • (2002) Machine Learning , vol.46 , pp. 389-422
    • Guyon, I.1    Weston, J.2    Bamhill, S.3    Vapnik, V.4
  • 35
    • 85153291978 scopus 로고    scopus 로고
    • Guyon, I, Gunn, S, Nikravesh, M, and Zadeh, L. A, Eds, Springer, Heidelberg
    • Guyon, I., Gunn, S., Nikravesh, M., and Zadeh, L. A. (Eds.) (2006). Feature Extra ction. Foundations and Applications. Springer, Heidelberg.
    • (2006) Feature Extra ction. Foundations and Applications
  • 37
    • 84942484786 scopus 로고
    • Ridge regression: Biased estimation for nonorthogonal problems
    • Hoerl, A. E. and Kennard, R. (1970). Ridge regression: biased estimation for nonorthogonal problems. Technometrics 12, 55-67.
    • (1970) Technometrics , vol.12 , pp. 55-67
    • Hoerl, A.E.1    Kennard, R.2
  • 40
    • 26444479778 scopus 로고
    • Optimization by simulated annealing
    • Kirkpatrick, S., Gelatt, C. D. J., and Vecchi, M. P. (1983). Optimization by simulated annealing. Science 220, 671-680.
    • (1983) Science , vol.220 , pp. 671-680
    • Kirkpatrick, S.1    Gelatt, C.D.J.2    Vecchi, M.P.3
  • 42
    • 10444280144 scopus 로고    scopus 로고
    • An extensive comparison of recent classification tools applied to microarray data
    • Lee, J. W., Lee, J. B., Park, M., and Song, S. H. (2005). An extensive comparison of recent classification tools applied to microarray data. Computational Statistics & Data Analysis 48, 869-885.
    • (2005) Computational Statistics & Data Analysis , vol.48 , pp. 869-885
    • Lee, J.W.1    Lee, J.B.2    Park, M.3    Song, S.H.4
  • 43
    • 0038729565 scopus 로고    scopus 로고
    • Classification of multiple cancer types by multicategory support vector machines using gene expression data
    • Lee, Y and Lee, C. K. (2003). Classification of multiple cancer types by multicategory support vector machines using gene expression data. Bioinformatics 19, 1132-1139.
    • (2003) Bioinformatics , vol.19 , pp. 1132-1139
    • Lee, Y.1    Lee, C.K.2
  • 44
    • 25944479013 scopus 로고    scopus 로고
    • Bagged clustering
    • Technical Report 51, Vienna University of Economics and Business Administration, Vienna, Austria
    • Leisch, F. (1999). Bagged clustering. Technical Report 51, Vienna University of Economics and Business Administration, Vienna, Austria.
    • (1999)
    • Leisch, F.1
  • 47
    • 25444453244 scopus 로고    scopus 로고
    • Screening large-scale association study data: Exploiting interactions using Random Forests
    • Lunetta, K. L., Hayward, L., Segal, J., and van Eerdewegh, P. (2004). Screening large-scale association study data: exploiting interactions using Random Forests. BMC Genetics 5, 32.
    • (2004) BMC Genetics , vol.5 , pp. 32
    • Lunetta, K.L.1    Hayward, L.2    Segal, J.3    van Eerdewegh, P.4
  • 49
    • 22944466045 scopus 로고    scopus 로고
    • Molecular diagnosis, classification, model selection and performance evaluation
    • Markowetz, F. and Spang, R. (2005). Molecular diagnosis, classification, model selection and performance evaluation. Methods of Information in Medicine 44, 438-443.
    • (2005) Methods of Information in Medicine , vol.44 , pp. 438-443
    • Markowetz, F.1    Spang, R.2
  • 50
    • 36949021059 scopus 로고    scopus 로고
    • Detecting high-order interactions of single nucleotide polymorphisms using genetic programming
    • Nunkesser, R., Bernholt, T., Schwender, H., Ickstadt, K., and Wegener, I. (2007). Detecting high-order interactions of single nucleotide polymorphisms using genetic programming. Bioinformatics 23, 3280- 3288.
    • (2007) Bioinformatics , vol.23 , pp. 3280-3288
    • Nunkesser, R.1    Bernholt, T.2    Schwender, H.3    Ickstadt, K.4    Wegener, I.5
  • 51
    • 37249080278 scopus 로고    scopus 로고
    • Penalized logistic regression for detecting gene interactions
    • Park, M. Y. and Hastie, T. (2008). Penalized logistic regression for detecting gene interactions. Biostatistics 9, 30-50.
    • (2008) Biostatistics , vol.9 , pp. 30-50
    • Park, M.Y.1    Hastie, T.2
  • 53
    • 84863304598 scopus 로고    scopus 로고
    • R Development Core Team , R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0
    • R Development Core Team (2008). R: A Language and Environmentfor Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0.
    • (2008) R: A Language and Environmentfor Statistical Computing
  • 58
    • 12744255343 scopus 로고    scopus 로고
    • Exploring interactions in high-dimensional genomic data: An overview of logic regression, with applications
    • Ruczinski, I., Kooperberg, C., and LeBlanc, M. (2004). Exploring interactions in high-dimensional genomic data: an overview of logic regression, with applications. Journal of Multivariate Analysis 90, 178-195.
    • (2004) Journal of Multivariate Analysis , vol.90 , pp. 178-195
    • Ruczinski, I.1    Kooperberg, C.2    LeBlanc, M.3
  • 61
    • 38049070957 scopus 로고    scopus 로고
    • Picking single-nucleotide polymorphisms in forests
    • Schwarz, D., Szymczak, S., Ziegler, A., and Knig, I. R. (2007). Picking single-nucleotide polymorphisms in forests. BMC Proceedings 1(Suppl 1), S59.
    • (2007) BMC Proceedings , vol.1 , Issue.SUPPL. 1
    • Schwarz, D.1    Szymczak, S.2    Ziegler, A.3    Knig, I.R.4
  • 62
    • 37249085147 scopus 로고    scopus 로고
    • Identification of SNP interactions using logic regression
    • Schwender, H. and Ickstadt, K. (2008). Identification of SNP interactions using logic regression. Biostatistics 9, 187-198.
    • (2008) Biostatistics , vol.9 , pp. 187-198
    • Schwender, H.1    Ickstadt, K.2
  • 63
    • 2942612346 scopus 로고    scopus 로고
    • A pilot study on the application of statistical classification procedures to molecular epidemiological data
    • Schwender, H., Zucknick, M., Ickstadt, K., Bolt, H. M., and Network, G. (2004). A pilot study on the application of statistical classification procedures to molecular epidemiological data. Toxicology Letters 151, 29 1-299.
    • (2004) Toxicology Letters , vol.151 , Issue.29 , pp. 1-299
    • Schwender, H.1    Zucknick, M.2    Ickstadt, K.3    Bolt, H.M.4    Network, G.5
  • 65
    • 0345327592 scopus 로고    scopus 로고
    • A simple and efficient algorithm for gene selection using sparse logistic regression
    • Shevade, S. K. and Keerthi, S. S. (2003). A simple and efficient algorithm for gene selection using sparse logistic regression. Bioinformatics 19, 2246-2253.
    • (2003) Bioinformatics , vol.19 , pp. 2246-2253
    • Shevade, S.K.1    Keerthi, S.S.2
  • 67
    • 33847096395 scopus 로고    scopus 로고
    • Bias in Random Forest variable importance measures: Illustrations, sources and a solution
    • Strobl, C., Boulesteix, A. L., Zeileis, A., and Hothorn, T. (2007). Bias in Random Forest variable importance measures: illustrations, sources and a solution. BMC Bioinformatics 8, 25.
    • (2007) BMC Bioinformatics , vol.8 , pp. 25
    • Strobl, C.1    Boulesteix, A.L.2    Zeileis, A.3    Hothorn, T.4
  • 68
    • 2942596534 scopus 로고    scopus 로고
    • Ensemble machine learning on gene expression data for cancer classification
    • Tan, A. C. and Gilbert, D. (2003). Ensemble machine learning on gene expression data for cancer classification. Applied Bioinformatics 2(Suppl 3), S75-S83.
    • (2003) Applied Bioinformatics , vol.2 , Issue.SUPPL. 3
    • Tan, A.C.1    Gilbert, D.2
  • 71
    • 2342533421 scopus 로고    scopus 로고
    • Class prediction by nearest shrunken centroids, with applications to DNA microarray s
    • Tibshirani, R., Hastie, T., Narasimhan, B., and Chu, G. (2003). Class prediction by nearest shrunken centroids, with applications to DNA microarray s. Statistical Science 18, 104-117.
    • (2003) Statistical Science , vol.18 , pp. 104-117
    • Tibshirani, R.1    Hastie, T.2    Narasimhan, B.3    Chu, G.4
  • 72
    • 0035942271 scopus 로고    scopus 로고
    • Significance analysis ofmicroarrays applied to the ionizing radiation response
    • Tusher, V., Tibshirani, R., and Chu, G. (2001). Significance analysis ofmicroarrays applied to the ionizing radiation response. Proceedings of the National Academy of Sciences 98, 5116-5124.
    • (2001) Proceedings of the National Academy of Sciences , vol.98 , pp. 5116-5124
    • Tusher, V.1    Tibshirani, R.2    Chu, G.3
  • 74
    • 0034796714 scopus 로고    scopus 로고
    • Introduction: Analysis of sequence data and population structure
    • Witte, J. S. and Fijal, B. A. (2001). Introduction: analysis of sequence data and population structure. Genetic Epidemiology 21, 600-601.
    • (2001) Genetic Epidemiology , vol.21 , pp. 600-601
    • Witte, J.S.1    Fijal, B.A.2
  • 75
    • 33947313355 scopus 로고    scopus 로고
    • A regression-based k nearest neighbor algorithm for gene function prediction from heterogeneous data
    • Yao, Z. and Ruzzo, W. L. (2006). A regression-based k nearest neighbor algorithm for gene function prediction from heterogeneous data. BMC Bioinformatics 7(Suppl 1), S11.
    • (2006) BMC Bioinformatics , vol.7 , Issue.SUPPL. 1
    • Yao, Z.1    Ruzzo, W.L.2
  • 76
    • 15944363312 scopus 로고    scopus 로고
    • Classification of gene microarrays by penalized logistic regression
    • Zhu, J. and Hastie, T. (2004). Classification of gene microarrays by penalized logistic regression. Biostatistics 5, 427-443.
    • (2004) Biostatistics , vol.5 , pp. 427-443
    • Zhu, J.1    Hastie, T.2
  • 77
    • 41149152918 scopus 로고    scopus 로고
    • Biostatistical aspects of genome-wide association studies
    • Ziegler, A., König, I. R., and Thompson, J. R. (2008). Biostatistical aspects of genome-wide association studies. Biometrical Journal 50, 8-28.
    • (2008) Biometrical Journal , vol.50 , pp. 8-28
    • Ziegler, A.1    König, I.R.2    Thompson, J.R.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.