메뉴 건너뛰기




Volumn 5, Issue 3, 2004, Pages 427-443

Classification of gene microarrays by penalized logistic regression

Author keywords

Cancer diagnosis; Feature selection; Logistic regression; Microarray; Support vector machines

Indexed keywords

ALGORITHM; ARTICLE; CHILD; CLASSIFICATION; COMPARATIVE STUDY; DNA MICROARRAY; HUMAN; METHODOLOGY; NEOPLASM; STATISTICAL MODEL;

EID: 15944363312     PISSN: 14654644     EISSN: None     Source Type: Journal    
DOI: 10.1093/biostatistics/kxg046     Document Type: Article
Times cited : (287)

References (14)
  • 1
    • 0036489046 scopus 로고    scopus 로고
    • Comparison of discrimination methods for the classification of tumors using gene expression data
    • DUDOIT, S., FRIDLYAND, J. AND SPEED, T. (2002). Comparison of discrimination methods for the classification of tumors using gene expression data. Journal of the American Statistical Association 97, 77-87.
    • (2002) Journal of the American Statistical Association , vol.97 , pp. 77-87
    • Dudoit, S.1    Fridlyand, J.2    Speed, T.3
  • 3
    • 0036161259 scopus 로고    scopus 로고
    • Gene selection for cancer classification using support vector machines
    • GUYON, I., WESTON, J., BARNHILL, S. AND VAPNIK, V. (2002). Gene selection for cancer classification using support vector machines. Machine Learning 46, 389-422.
    • (2002) Machine Learning , vol.46 , pp. 389-422
    • Guyon, I.1    Weston, J.2    Barnhill, S.3    Vapnik, V.4
  • 8
    • 0141479324 scopus 로고    scopus 로고
    • Classification of multiple cancer types by multicategory support vector machines using gene expression data
    • Department of Statistics, University of Wisconsin, Madison, WI
    • LEE, Y. AND LEE, C.K. (2002). Classification of multiple cancer types by multicategory support vector machines using gene expression data. Technical Report 1051. Department of Statistics, University of Wisconsin, Madison, WI.
    • (2002) Technical Report , vol.1051
    • Lee, Y.1    Lee, C.K.2
  • 10
    • 0004322632 scopus 로고    scopus 로고
    • Sequential minimal optimization: A fast algorithm for training support vector machines
    • Microsoft Research
    • PLATT, J. (1998). Sequential minimal optimization: A fast algorithm for training support vector machines. Technical Report MSR-TR-98-14, Microsoft Research.
    • (1998) Technical Report , vol.MSR-TR-98-14
    • Platt, J.1
  • 12
    • 1542367497 scopus 로고    scopus 로고
    • Boosting as a regularized path to a maximum margin classifier
    • Department of Statistics, Stanford University, Stanford, CA 94305
    • ROSSET, S., ZHU, J. AND HASTIE, T. (2002). Boosting as a regularized path to a maximum margin classifier. Technical Report. Department of Statistics, Stanford University, Stanford, CA 94305.
    • (2002) Technical Report
    • Rosset, S.1    Zhu, J.2    Hastie, T.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.