-
1
-
-
1842851813
-
-
For reviews, see: a
-
For reviews, see: (a) Douglas, C. J.; Overman, L. E. Proc. Natl. Acad. Sci. U.S.A. 2004, 101, 5363.
-
(2004)
Proc. Natl. Acad. Sci. U.S.A
, vol.101
, pp. 5363
-
-
Douglas, C.J.1
Overman, L.E.2
-
4
-
-
0035926418
-
-
(a) Chavarot, M.; Byrne, J. J.; Chavant, P. Y.; Vallée, Y. Tetrahedron: Asymmetry 2001, 12, 1147.
-
(2001)
Tetrahedron: Asymmetry
, vol.12
, pp. 1147
-
-
Chavarot, M.1
Byrne, J.J.2
Chavant, P.Y.3
Vallée, Y.4
-
5
-
-
0037958740
-
-
(b) Masumoto, S.; Usuda, H.; Suzuki, M.; Kanai, M.; Shibasaki, M. J. Am. Chem. Soc. 2003, 125, 5634.
-
(2003)
J. Am. Chem. Soc
, vol.125
, pp. 5634
-
-
Masumoto, S.1
Usuda, H.2
Suzuki, M.3
Kanai, M.4
Shibasaki, M.5
-
6
-
-
36148970839
-
-
and references cited therein
-
(c) Wang, J.; Hu, X.; Jiang, J.; Gou, S.; Huang, X.; Liu, X.; Feng, X. Angew. Chem., Int. Ed. 2007, 46, 8468, and references cited therein.
-
(2007)
Angew. Chem., Int. Ed
, vol.46
, pp. 8468
-
-
Wang, J.1
Hu, X.2
Jiang, J.3
Gou, S.4
Huang, X.5
Liu, X.6
Feng, X.7
-
7
-
-
33745033537
-
-
Wada, R.; Shibuguchi, T.; Makino, S.; Oisaki, K.; Kanai, M.; Shibasaki, M. J. Am. Chem. Soc. 2006, 128, 7687.
-
(2006)
J. Am. Chem. Soc
, vol.128
, pp. 7687
-
-
Wada, R.1
Shibuguchi, T.2
Makino, S.3
Oisaki, K.4
Kanai, M.5
Shibasaki, M.6
-
8
-
-
0346732156
-
-
(a) Saaby, S.; Nakama, K.; Lie, M. A.; Hazell, R. G.; Jørgensen, K. A. Chem. - Eur. J. 2003, 9, 6145.
-
(2003)
Chem. - Eur. J
, vol.9
, pp. 6145
-
-
Saaby, S.1
Nakama, K.2
Lie, M.A.3
Hazell, R.G.4
Jørgensen, K.A.5
-
9
-
-
33846409049
-
-
(b) Suto, Y.; Kanai, M.; Shibasaki, M. J. Am. Chem. Soc. 2007, 129, 500.
-
(2007)
J. Am. Chem. Soc
, vol.129
, pp. 500
-
-
Suto, Y.1
Kanai, M.2
Shibasaki, M.3
-
11
-
-
42949168465
-
-
(b) Fu, P.; Snapper, M. L.; Hoveyda, A. H. J. Am. Chem. Soc. 2008, 130, 5530.
-
(2008)
J. Am. Chem. Soc
, vol.130
, pp. 5530
-
-
Fu, P.1
Snapper, M.L.2
Hoveyda, A.H.3
-
15
-
-
34250780205
-
-
(c) Rueping, M.; Sugiono, E.; Moreth, S. A. Adv. Synth. Catal. 2007, 349, 759.
-
(2007)
Adv. Synth. Catal
, vol.349
, pp. 759
-
-
Rueping, M.1
Sugiono, E.2
Moreth, S.A.3
-
16
-
-
4544387566
-
-
Zhuang, W.; Saaby, S.; Jørgensen, K. A. Angew. Chem., Int. Ed. 2004, 43, 4476.
-
(2004)
Angew. Chem., Int. Ed
, vol.43
, pp. 4476
-
-
Zhuang, W.1
Saaby, S.2
Jørgensen, K.A.3
-
17
-
-
26444544180
-
-
(a) Ruano, J. L. G.; Topp, M.; López-Cantarero, J.; Alemán, J.; Remuiñán, M. J.; Cid, M. B. Org. Lett. 2005, 7, 4407.
-
(2005)
Org. Lett
, vol.7
, pp. 4407
-
-
Ruano, J.L.G.1
Topp, M.2
López-Cantarero, J.3
Alemán, J.4
Remuiñán, M.J.5
Cid, M.B.6
-
18
-
-
35748940641
-
-
(b) Pahadi, N. K.; Ube, H.; Terada, M. Tetarahedron Lett. 2007, 48, 8700.
-
(2007)
Tetarahedron Lett
, vol.48
, pp. 8700
-
-
Pahadi, N.K.1
Ube, H.2
Terada, M.3
-
19
-
-
0001964537
-
-
For reviews: a
-
For reviews: (a) Arseniyadis, S.; Kyler, K. S.; Watt, D. S. Org. React. 1984, 31, 1.
-
(1984)
Org. React
, vol.31
, pp. 1
-
-
Arseniyadis, S.1
Kyler, K.S.2
Watt, D.S.3
-
22
-
-
2942700302
-
-
Selected examples on catalytic generation of active nucleophile from alkylnitriles: (a) Verkade, J. G.; Kisanga, P. B. Aldrichimica Acta 2004, 37, 3.
-
Selected examples on catalytic generation of active nucleophile from alkylnitriles: (a) Verkade, J. G.; Kisanga, P. B. Aldrichimica Acta 2004, 37, 3.
-
-
-
-
23
-
-
0001741977
-
-
(b) Rodriguez, A. L.; Bunlaksananusorn, T.; Knochel, P. Org. Lett. 2000, 2, 3285.
-
(2000)
Org. Lett
, vol.2
, pp. 3285
-
-
Rodriguez, A.L.1
Bunlaksananusorn, T.2
Knochel, P.3
-
24
-
-
24044453210
-
-
(c) Suto, Y.; Tsuji, R.; Kanai, M.; Shibasaki, M. Org. Lett. 2005, 7, 3757.
-
(2005)
Org. Lett
, vol.7
, pp. 3757
-
-
Suto, Y.1
Tsuji, R.2
Kanai, M.3
Shibasaki, M.4
-
25
-
-
6444227416
-
-
(d) Kumagai, N.; Matsunaga, S.; Shibasaki, M. J. Am. Chem. Soc. 2004, 126, 13632.
-
(2004)
J. Am. Chem. Soc
, vol.126
, pp. 13632
-
-
Kumagai, N.1
Matsunaga, S.2
Shibasaki, M.3
-
27
-
-
46749152555
-
-
(f) Goto, A.; Endo, K.; Ukai, Y.; Irle, S.; Saito, S. Chem. Commun. 2008, 2212.
-
(2008)
Chem. Commun
, pp. 2212
-
-
Goto, A.1
Endo, K.2
Ukai, Y.3
Irle, S.4
Saito, S.5
-
28
-
-
55549099722
-
-
Calculated at the B3LYP/6-31G+(d,p) level. See Supporting Information for details.
-
Calculated at the B3LYP/6-31G+(d,p) level. See Supporting Information for details.
-
-
-
-
31
-
-
46049098154
-
-
Swartz, B. D.; Reinartz, N. M.; Brennessel, W. W.; García, J. J.; Jones, W. D. J. Am. Chem. Soc. 2008, 130, 8548. See also ref 11a.
-
(c) Swartz, B. D.; Reinartz, N. M.; Brennessel, W. W.; García, J. J.; Jones, W. D. J. Am. Chem. Soc. 2008, 130, 8548. See also ref 11a.
-
-
-
-
33
-
-
55549131708
-
-
An inexpensive C4 unit. $193.7/500 mL from TCI America as of Aug 2008
-
An inexpensive C4 unit. $193.7/500 mL from TCI America as of Aug 2008.
-
-
-
-
34
-
-
34548154771
-
-
Olefin geometry of major geometrical isomer was determined to be Z by NOE analysis. Isomerization of double bond was observed in aldol-type addition of allylic cyanide (refs 11a and 13a) and a direct Mannich-type reaction of β,γ-unsaturated ester; see: Yamaguchi, A.; Aoyama, N.; Matsunaga, S.; Shibasaki, M. Org. Lett. 2007, 9, 3387.
-
Olefin geometry of major geometrical isomer was determined to be Z by NOE analysis. Isomerization of double bond was observed in aldol-type addition of allylic cyanide (refs 11a and 13a) and a direct Mannich-type reaction of β,γ-unsaturated ester; see: Yamaguchi, A.; Aoyama, N.; Matsunaga, S.; Shibasaki, M. Org. Lett. 2007, 9, 3387.
-
-
-
-
36
-
-
55549084694
-
-
1H NMR and ESI-MS analysis. Analogous catalysts derived from Me or Et-BPE did not promote the reaction at all. For further discussions, see Supporting Information.
-
1H NMR and ESI-MS analysis. Analogous catalysts derived from Me or Et-BPE did not promote the reaction at all. For further discussions, see Supporting Information.
-
-
-
-
37
-
-
0000526763
-
-
Formation of CuOAr upon addition of alkali metal aryloxide to Cu(I) salt; see: Eller, P. G.; Kubas, G. J. J. Am. Chem. Soc. 1977, 99, 4346.
-
Formation of CuOAr upon addition of alkali metal aryloxide to Cu(I) salt; see: Eller, P. G.; Kubas, G. J. J. Am. Chem. Soc. 1977, 99, 4346.
-
-
-
-
38
-
-
53849129261
-
-
For C- or N-bound nitrile nucleophile, see: Naota, T.; Tannna, A.; Kamuro, S.; Hieda, M.; Ogata, K.; Murahashi, S.-I.; Takaya, H. Chem.-Eur. J. 2008, 14, 2482, and references cited therein
-
For C- or N-bound nitrile nucleophile, see: Naota, T.; Tannna, A.; Kamuro, S.; Hieda, M.; Ogata, K.; Murahashi, S.-I.; Takaya, H. Chem.-Eur. J. 2008, 14, 2482, and references cited therein
-
-
-
-
39
-
-
44649186145
-
-
and references cited therein. For allylcopper nucleophile in asymmetric catalysis, see
-
For allylcopper nucleophile in asymmetric catalysis, see: Kanai, M.; Wada, R.; Shibuguchi, T.; Shibasaki, M. Pure Appl. Chem. 2008, 80, 1055, and references cited therein.
-
(2008)
Pure Appl. Chem
, vol.80
, pp. 1055
-
-
Kanai, M.1
Wada, R.2
Shibuguchi, T.3
Shibasaki, M.4
-
40
-
-
85022414300
-
-
Formation of CuOAr upon addition of ArOH to arylcopper; see
-
Formation of CuOAr upon addition of ArOH to arylcopper; see: Kubota, M.; Yamamoto, A. Bull Chem. Soc. Jpn. 1978, 51, 2909.
-
(1978)
Bull Chem. Soc. Jpn
, vol.51
, pp. 2909
-
-
Kubota, M.1
Yamamoto, A.2
-
41
-
-
0000384685
-
-
At this stage, there are three possibilities: (1) At least 2 Ph-BPE/CuOAr would work together to deprotonate allyl cyanide (2a) if 2a coordinates to Cu in an end-on fashion, because intramolecular proton transfer in Ph-BPE/Cu(NCCH2CH=CH2)OAr would be topologically unlikely. A Li cation would be beneficial for the association of Ph-BPE/CuOAr complexes through a hard-hard interaction between the Li cation and aryloxide, resulting in the acidic protons of Cu-coordinated 2a being located close to another Ph-BPE/CuOAr, which would facilitate the deprotonation of 2a (see the following figure, 2) The Li cation would function as a hard Lewis acid to activate ketoimine 1 for nucleophilic addition, 3) LiClO4 would replace Cu-bound aryloxide, thereby enhancing the Lewis acidity of Cu to facilitate deprotonation and/or addition reaction for a special salt effect of LiClO4, see: Winstein, S, Friedrich, E. C, Smith, S
-
4 was beneficial for the deprotonation process. Possibility (1) would be the most likely.
-
-
-
|