메뉴 건너뛰기




Volumn 23, Issue 2, 2007, Pages 198-214

Fully online classification by regularization

Author keywords

Classification algorithm; Error analysis; Online learning; Regularization; Reproducing kernel Hilbert spaces

Indexed keywords

ALGORITHMS; CLASSIFICATION (OF INFORMATION); ERROR ANALYSIS; PARAMETER ESTIMATION; SUPPORT VECTOR MACHINES;

EID: 34547603945     PISSN: 10635203     EISSN: 1096603X     Source Type: Journal    
DOI: 10.1016/j.acha.2006.12.001     Document Type: Article
Times cited : (31)

References (27)
  • 1
    • 5844297152 scopus 로고
    • Theory of reproducing kernels
    • Aronszajn N. Theory of reproducing kernels. Trans. Amer. Math. Soc. 68 (1950) 337-404
    • (1950) Trans. Amer. Math. Soc. , vol.68 , pp. 337-404
    • Aronszajn, N.1
  • 3
    • 84879394399 scopus 로고    scopus 로고
    • Support vector machine soft margin classifiers: Error analysis
    • Chen D.R., Wu Q., Ying Y., and Zhou D.X. Support vector machine soft margin classifiers: Error analysis. J. Mach. Learn. Res. 5 (2004) 1143-1175
    • (2004) J. Mach. Learn. Res. , vol.5 , pp. 1143-1175
    • Chen, D.R.1    Wu, Q.2    Ying, Y.3    Zhou, D.X.4
  • 4
    • 0030145382 scopus 로고    scopus 로고
    • Worst-case quadratic loss bounds for prediction using linear functions and gradient descent
    • Cesa-Bianchi N., Long P., and Warmuth M.K. Worst-case quadratic loss bounds for prediction using linear functions and gradient descent. IEEE Trans. Neural Networks 7 (1996) 604-619
    • (1996) IEEE Trans. Neural Networks , vol.7 , pp. 604-619
    • Cesa-Bianchi, N.1    Long, P.2    Warmuth, M.K.3
  • 5
    • 4544304381 scopus 로고    scopus 로고
    • On the generalization ability of on-line learning algorithms
    • Cesa-Bianchi N., Conconi A., and Gentile C. On the generalization ability of on-line learning algorithms. IEEE Trans. Inform. Theory 50 (2004) 2050-2057
    • (2004) IEEE Trans. Inform. Theory , vol.50 , pp. 2050-2057
    • Cesa-Bianchi, N.1    Conconi, A.2    Gentile, C.3
  • 6
    • 24944432318 scopus 로고    scopus 로고
    • Model selection for regularized least-squares algorithm in learning theory
    • De Vito E., Caponnetto A., and Rosasco L. Model selection for regularized least-squares algorithm in learning theory. Found. Comput. Math. 5 (2005) 59-85
    • (2005) Found. Comput. Math. , vol.5 , pp. 59-85
    • De Vito, E.1    Caponnetto, A.2    Rosasco, L.3
  • 8
    • 0034419669 scopus 로고    scopus 로고
    • Regularization networks and support vector machines
    • Evgeniou T., Pontil M., and Poggio T. Regularization networks and support vector machines. Adv. Comput. Math. 13 (2000) 1-50
    • (2000) Adv. Comput. Math. , vol.13 , pp. 1-50
    • Evgeniou, T.1    Pontil, M.2    Poggio, T.3
  • 9
    • 0036476991 scopus 로고    scopus 로고
    • Relative expected instantaneous loss bounds
    • Forster J., and Warmuth M.K. Relative expected instantaneous loss bounds. J. Comput. Syst. Sci. 64 (2002) 76-102
    • (2002) J. Comput. Syst. Sci. , vol.64 , pp. 76-102
    • Forster, J.1    Warmuth, M.K.2
  • 11
    • 0036258405 scopus 로고    scopus 로고
    • Support vector machines and the Bayes rule in classification
    • Lin Y. Support vector machines and the Bayes rule in classification. Data Min. Knowl. Discov. 6 (2002) 259-275
    • (2002) Data Min. Knowl. Discov. , vol.6 , pp. 259-275
    • Lin, Y.1
  • 12
    • 9444269961 scopus 로고    scopus 로고
    • On the Bayes-risk consistency of regularized boosting methods
    • Lugosi G., and Vayatis N. On the Bayes-risk consistency of regularized boosting methods. Ann. Statist. 32 (2004) 30-55
    • (2004) Ann. Statist. , vol.32 , pp. 30-55
    • Lugosi, G.1    Vayatis, N.2
  • 13
    • 17444401898 scopus 로고    scopus 로고
    • Regression and classification with regularization
    • Denison D.D., Hansen M.H., Holmes C., Mallick B., and Yu B. (Eds), Springer-Verlag, New York
    • Mukherjee S., Rifkin R., and Poggio T. Regression and classification with regularization. In: Denison D.D., Hansen M.H., Holmes C., Mallick B., and Yu B. (Eds). Nonlinear Estimation and Classification (2002), Springer-Verlag, New York 107-124
    • (2002) Nonlinear Estimation and Classification , pp. 107-124
    • Mukherjee, S.1    Rifkin, R.2    Poggio, T.3
  • 14
    • 33746061490 scopus 로고    scopus 로고
    • Stability results in learning theory
    • Rakhlin A., Mukherjee S., and Poggio T. Stability results in learning theory. Anal. Appl. 3 (2005) 397-417
    • (2005) Anal. Appl. , vol.3 , pp. 397-417
    • Rakhlin, A.1    Mukherjee, S.2    Poggio, T.3
  • 16
    • 34547587429 scopus 로고    scopus 로고
    • C. Scovel, I. Steinwart, Fast rates for support vector machines, in: Proc. 18th Conf. on Learning Theory (COLT-2005), Bertinoro, Italy, 2005
  • 17
    • 33744740175 scopus 로고    scopus 로고
    • Online learning algorithms
    • Smale S., and Yao Y. Online learning algorithms. Found. Comput. Math. 6 (2006) 145-170
    • (2006) Found. Comput. Math. , vol.6 , pp. 145-170
    • Smale, S.1    Yao, Y.2
  • 18
    • 0037749769 scopus 로고    scopus 로고
    • Estimating the approximation error in learning theory
    • Smale S., and Zhou D.X. Estimating the approximation error in learning theory. Anal. Appl. 1 (2003) 17-41
    • (2003) Anal. Appl. , vol.1 , pp. 17-41
    • Smale, S.1    Zhou, D.X.2
  • 19
    • 3042850649 scopus 로고    scopus 로고
    • Shannon sampling and function reconstruction from point values
    • Smale S., and Zhou D.X. Shannon sampling and function reconstruction from point values. Bull. Amer. Math. Soc. 41 (2004) 279-305
    • (2004) Bull. Amer. Math. Soc. , vol.41 , pp. 279-305
    • Smale, S.1    Zhou, D.X.2
  • 20
    • 27844555491 scopus 로고    scopus 로고
    • Shannon sampling II: Connections to learning theory
    • Smale S., and Zhou D.X. Shannon sampling II: Connections to learning theory. Appl. Comput. Harmon. Anal. 19 (2005) 285-302
    • (2005) Appl. Comput. Harmon. Anal. , vol.19 , pp. 285-302
    • Smale, S.1    Zhou, D.X.2
  • 21
    • 34547559684 scopus 로고    scopus 로고
    • S. Smale, D.X. Zhou, Learning theory estimates via integral operators and their applications, Constr. Approx., in press
  • 22
    • 0036749277 scopus 로고    scopus 로고
    • Support vector machines are universally consistent
    • Steinwart I. Support vector machines are universally consistent. J. Complexity 18 (2002) 768-791
    • (2002) J. Complexity , vol.18 , pp. 768-791
    • Steinwart, I.1
  • 23
    • 34547576905 scopus 로고    scopus 로고
    • P. Tarrès, Y. Yao, Online learning as stochastic approximations of regularization paths, preprint, 2005
  • 25
    • 34547573446 scopus 로고    scopus 로고
    • Q. Wu, Y. Ying, D.X. Zhou, Multi-kernel regularized classifiers, J. Complexity, in press
  • 26
    • 33750594552 scopus 로고    scopus 로고
    • Online regularized classification algorithms
    • Ying Y., and Zhou D.X. Online regularized classification algorithms. IEEE Trans. Inform. Theory 52 (2006) 4775-4788
    • (2006) IEEE Trans. Inform. Theory , vol.52 , pp. 4775-4788
    • Ying, Y.1    Zhou, D.X.2
  • 27
    • 4644257995 scopus 로고    scopus 로고
    • Statistical behavior and consistency of classification methods based on convex risk minimization
    • Zhang T. Statistical behavior and consistency of classification methods based on convex risk minimization. Ann. Statist. 32 (2004) 56-85
    • (2004) Ann. Statist. , vol.32 , pp. 56-85
    • Zhang, T.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.