-
1
-
-
5844297152
-
Theory of reproducing kernels
-
Aronszajn N. Theory of reproducing kernels. Trans. Amer. Math. Soc. 68 (1950) 337-404
-
(1950)
Trans. Amer. Math. Soc.
, vol.68
, pp. 337-404
-
-
Aronszajn, N.1
-
2
-
-
33645505792
-
Convexity, classification, and risk bounds
-
Bartlett P.L., Jordan M.I., and McAuliffe J.D. Convexity, classification, and risk bounds. J. Amer. Statist. Assoc. 101 (2006) 138-156
-
(2006)
J. Amer. Statist. Assoc.
, vol.101
, pp. 138-156
-
-
Bartlett, P.L.1
Jordan, M.I.2
McAuliffe, J.D.3
-
3
-
-
84879394399
-
Support vector machine soft margin classifiers: Error analysis
-
Chen D.R., Wu Q., Ying Y., and Zhou D.X. Support vector machine soft margin classifiers: Error analysis. J. Mach. Learn. Res. 5 (2004) 1143-1175
-
(2004)
J. Mach. Learn. Res.
, vol.5
, pp. 1143-1175
-
-
Chen, D.R.1
Wu, Q.2
Ying, Y.3
Zhou, D.X.4
-
4
-
-
0030145382
-
Worst-case quadratic loss bounds for prediction using linear functions and gradient descent
-
Cesa-Bianchi N., Long P., and Warmuth M.K. Worst-case quadratic loss bounds for prediction using linear functions and gradient descent. IEEE Trans. Neural Networks 7 (1996) 604-619
-
(1996)
IEEE Trans. Neural Networks
, vol.7
, pp. 604-619
-
-
Cesa-Bianchi, N.1
Long, P.2
Warmuth, M.K.3
-
6
-
-
24944432318
-
Model selection for regularized least-squares algorithm in learning theory
-
De Vito E., Caponnetto A., and Rosasco L. Model selection for regularized least-squares algorithm in learning theory. Found. Comput. Math. 5 (2005) 59-85
-
(2005)
Found. Comput. Math.
, vol.5
, pp. 59-85
-
-
De Vito, E.1
Caponnetto, A.2
Rosasco, L.3
-
8
-
-
0034419669
-
Regularization networks and support vector machines
-
Evgeniou T., Pontil M., and Poggio T. Regularization networks and support vector machines. Adv. Comput. Math. 13 (2000) 1-50
-
(2000)
Adv. Comput. Math.
, vol.13
, pp. 1-50
-
-
Evgeniou, T.1
Pontil, M.2
Poggio, T.3
-
9
-
-
0036476991
-
Relative expected instantaneous loss bounds
-
Forster J., and Warmuth M.K. Relative expected instantaneous loss bounds. J. Comput. Syst. Sci. 64 (2002) 76-102
-
(2002)
J. Comput. Syst. Sci.
, vol.64
, pp. 76-102
-
-
Forster, J.1
Warmuth, M.K.2
-
11
-
-
0036258405
-
Support vector machines and the Bayes rule in classification
-
Lin Y. Support vector machines and the Bayes rule in classification. Data Min. Knowl. Discov. 6 (2002) 259-275
-
(2002)
Data Min. Knowl. Discov.
, vol.6
, pp. 259-275
-
-
Lin, Y.1
-
12
-
-
9444269961
-
On the Bayes-risk consistency of regularized boosting methods
-
Lugosi G., and Vayatis N. On the Bayes-risk consistency of regularized boosting methods. Ann. Statist. 32 (2004) 30-55
-
(2004)
Ann. Statist.
, vol.32
, pp. 30-55
-
-
Lugosi, G.1
Vayatis, N.2
-
13
-
-
17444401898
-
Regression and classification with regularization
-
Denison D.D., Hansen M.H., Holmes C., Mallick B., and Yu B. (Eds), Springer-Verlag, New York
-
Mukherjee S., Rifkin R., and Poggio T. Regression and classification with regularization. In: Denison D.D., Hansen M.H., Holmes C., Mallick B., and Yu B. (Eds). Nonlinear Estimation and Classification (2002), Springer-Verlag, New York 107-124
-
(2002)
Nonlinear Estimation and Classification
, pp. 107-124
-
-
Mukherjee, S.1
Rifkin, R.2
Poggio, T.3
-
16
-
-
34547587429
-
-
C. Scovel, I. Steinwart, Fast rates for support vector machines, in: Proc. 18th Conf. on Learning Theory (COLT-2005), Bertinoro, Italy, 2005
-
-
-
-
17
-
-
33744740175
-
Online learning algorithms
-
Smale S., and Yao Y. Online learning algorithms. Found. Comput. Math. 6 (2006) 145-170
-
(2006)
Found. Comput. Math.
, vol.6
, pp. 145-170
-
-
Smale, S.1
Yao, Y.2
-
18
-
-
0037749769
-
Estimating the approximation error in learning theory
-
Smale S., and Zhou D.X. Estimating the approximation error in learning theory. Anal. Appl. 1 (2003) 17-41
-
(2003)
Anal. Appl.
, vol.1
, pp. 17-41
-
-
Smale, S.1
Zhou, D.X.2
-
19
-
-
3042850649
-
Shannon sampling and function reconstruction from point values
-
Smale S., and Zhou D.X. Shannon sampling and function reconstruction from point values. Bull. Amer. Math. Soc. 41 (2004) 279-305
-
(2004)
Bull. Amer. Math. Soc.
, vol.41
, pp. 279-305
-
-
Smale, S.1
Zhou, D.X.2
-
20
-
-
27844555491
-
Shannon sampling II: Connections to learning theory
-
Smale S., and Zhou D.X. Shannon sampling II: Connections to learning theory. Appl. Comput. Harmon. Anal. 19 (2005) 285-302
-
(2005)
Appl. Comput. Harmon. Anal.
, vol.19
, pp. 285-302
-
-
Smale, S.1
Zhou, D.X.2
-
21
-
-
34547559684
-
-
S. Smale, D.X. Zhou, Learning theory estimates via integral operators and their applications, Constr. Approx., in press
-
-
-
-
22
-
-
0036749277
-
Support vector machines are universally consistent
-
Steinwart I. Support vector machines are universally consistent. J. Complexity 18 (2002) 768-791
-
(2002)
J. Complexity
, vol.18
, pp. 768-791
-
-
Steinwart, I.1
-
23
-
-
34547576905
-
-
P. Tarrès, Y. Yao, Online learning as stochastic approximations of regularization paths, preprint, 2005
-
-
-
-
25
-
-
34547573446
-
-
Q. Wu, Y. Ying, D.X. Zhou, Multi-kernel regularized classifiers, J. Complexity, in press
-
-
-
-
26
-
-
33750594552
-
Online regularized classification algorithms
-
Ying Y., and Zhou D.X. Online regularized classification algorithms. IEEE Trans. Inform. Theory 52 (2006) 4775-4788
-
(2006)
IEEE Trans. Inform. Theory
, vol.52
, pp. 4775-4788
-
-
Ying, Y.1
Zhou, D.X.2
-
27
-
-
4644257995
-
Statistical behavior and consistency of classification methods based on convex risk minimization
-
Zhang T. Statistical behavior and consistency of classification methods based on convex risk minimization. Ann. Statist. 32 (2004) 56-85
-
(2004)
Ann. Statist.
, vol.32
, pp. 56-85
-
-
Zhang, T.1
|