메뉴 건너뛰기




Volumn 3559 LNAI, Issue , 2005, Pages 486-500

Towards a theoretical foundation for Laplacian-based manifold methods

Author keywords

[No Author keywords available]

Indexed keywords

CONVERGENCE OF NUMERICAL METHODS; GRAPH THEORY; LEARNING SYSTEMS; MATHEMATICAL OPERATORS;

EID: 26944439046     PISSN: 03029743     EISSN: 16113349     Source Type: Book Series    
DOI: 10.1007/11503415_33     Document Type: Conference Paper
Times cited : (185)

References (31)
  • 2
    • 84898946656 scopus 로고    scopus 로고
    • Using manifold structure for partially labeled classification
    • M. Belkin, P. Niyogi, Using Manifold Structure for Partially Labeled Classification, NIPS 2002.
    • NIPS 2002
    • Belkin, M.1    Niyogi, P.2
  • 3
    • 0042378381 scopus 로고    scopus 로고
    • Laplacian eigenmaps for dimensionality reduction and data representation
    • M. Belkin, P. Niyogi. (2003). Laplacian Eigenmaps for Dimensionality Reduction and Data Representation, Neural Computation, Vol. 15, No. 6, 1373-1396.
    • (2003) Neural Computation , vol.15 , Issue.6 , pp. 1373-1396
    • Belkin, M.1    Niyogi, P.2
  • 8
    • 33947233031 scopus 로고    scopus 로고
    • Out-of-sample extensions for LLE, Isomap, MDS, eigenmaps, and spectral clustering
    • Y. Bengio, J-F. Paiement, and P. Vincent,Out-of-Sample Extensions for LLE, Isomap, MDS, Eigenmaps, and Spectral Clustering, NIPS 2003.
    • NIPS 2003
    • Bengio, Y.1    Paiement, J.-F.2    Vincent, P.3
  • 13
    • 33749598434 scopus 로고    scopus 로고
    • From graphs to manifolds - Weak and strong pointwise consistency of graph Laplacians
    • to appear
    • M. Hein, J.-Y. Audibert, U. von Luxburg, From Graphs to Manifolds - Weak and Strong Pointwise Consistency of Graph Laplacians, COLT 2005, (to appear).
    • COLT 2005
    • Hein, M.1    Audibert, J.-Y.2    Von Luxburg, U.3
  • 14
    • 84898985184 scopus 로고    scopus 로고
    • Learning segmentation by random walks
    • M. Meila, J. Shi, Learning segmentation by random walks, NIPS 2000.
    • NIPS 2000
    • Meila, M.1    Shi, J.2
  • 18
    • 84899013108 scopus 로고    scopus 로고
    • On spectral clustering: Analysis and an algorithm
    • A. Ng, M. Jordan, Y. Weiss, On Spectral Clustering: Analysis and an Algorithm, NIPS 2001.
    • NIPS 2001
    • Ng, A.1    Jordan, M.2    Weiss, Y.3
  • 20
    • 26944503878 scopus 로고    scopus 로고
    • Finding the homology of submanifolds with high confidence from random samples
    • P. Niyogi, S. Smale, S. Weinberger, Finding the Homology of Submanifolds with High Confidence from Random Samples, Univ. of Chicago Technical Report TR2004-08, 2004.
    • (2004) Univ. of Chicago Technical Report , vol.TR2004-08
    • Niyogi, P.1    Smale, S.2    Weinberger, S.3
  • 22
    • 0034704222 scopus 로고    scopus 로고
    • Nonlinear dimensionality reduction by locally linear embedding
    • Sam T. Roweis, Lawrence K. Saul. (2000). Nonlinear Dimensionality Reduction by Locally Linear Embedding, Science, vol 290.
    • (2000) Science , vol.290
    • Roweis, S.T.1    Saul, L.K.2
  • 23
  • 25
    • 0030381960 scopus 로고    scopus 로고
    • Spectral partitioning works: Planar graphs and finite element meshes
    • D. Spielman, S. Teng, Spectral partitioning works: planar graphs and finite element meshes, FOCS 1996.
    • FOCS 1996
    • Spielman, D.1    Teng, S.2
  • 26
    • 84858874031 scopus 로고    scopus 로고
    • Partially labeled classification with Markov random walks
    • Martin Szummer, Tommi Jaakkola, Partially labeled classification with Markov random walks, NIPS 2001.
    • NIPS 2001
    • Szummer, M.1    Jaakkola, T.2
  • 27
    • 0034704229 scopus 로고    scopus 로고
    • A global geometric framework for nonlinear dimensionality reduction
    • J.B.Tenenbaum, V. de Silva, J. C. Langford. (2000). A Global Geometric Framework for Nonlinear Dimensionality Reduction, Science, Vol 290.
    • (2000) Science , vol.290
    • Tenenbaum, J.B.1    De Silva, V.2    Langford, J.C.3
  • 28
    • 9444296683 scopus 로고    scopus 로고
    • On clusterings - Good, bad and spectral
    • Computer Science Department, Yale University
    • R. Kannan, S. Vempala, A. Vetta, On Clusterings - Good, Bad and Spectral, Technical Report, Computer Science Department, Yale University, 2000.
    • (2000) Technical Report
    • Kannan, R.1    Vempala, S.2    Vetta, A.3
  • 30
    • 1942484430 scopus 로고    scopus 로고
    • Semi-supervised learning using Gaussian fields and harmonic functions
    • X. Zhu, J. Lafferty and Z. Ghahramani, Semi-supervised learning using Gaussian fields and harmonic functions, ICML 2003.
    • ICML 2003
    • Zhu, X.1    Lafferty, J.2    Ghahramani, Z.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.