메뉴 건너뛰기




Volumn 47, Issue 34, 2008, Pages 6330-6337

Rolling circle amplification: Applications in nanotechnology and biodetection with functional nucleic acids

Author keywords

Aptamers; Biosensors; Functional nucleic acids; Nanostructures; Rolling circle amplification

Indexed keywords

ABS RESINS; AMPLIFICATION; BIOSENSORS; DNA; FUNCTIONAL POLYMERS; GENES; MOLECULAR BIOLOGY; NANOTECHNOLOGY; NUCLEIC ACIDS; ORGANIC ACIDS; PROTEINS;

EID: 52049091328     PISSN: 14337851     EISSN: None     Source Type: Journal    
DOI: 10.1002/anie.200705982     Document Type: Short Survey
Times cited : (489)

References (105)
  • 1
    • 53349113094 scopus 로고    scopus 로고
    • The circular DNA template used in the RCA process can be synthesized enzymatically or chemically through the intramolecular ligation of phosphate and hydroxy end groups. In the enzymatic synthesis (see Ref, 15] for a typical protocol, the two reactive ends of a linear DNA precursor are joined by an enzyme (e.g, T4 DNA ligase, The enzymatic synthesis proceeds efficiently (>90% yield) for relatively large DNA substrates, but may not be suitable for making small circular DNA (<30 nucleotides (nt, and particularly those <10 nt, presumably as a result of inadequate saturation of the enzyme binding sites and/or the strain induced upon the ring closure of short oligonucleotides (see Refs, 1b-d, This shortcoming might be an obstacle to the use of the RCA method in some cases, as enzymatic synthesis is the most commonly used strategy for the creation of the circular DNA template in RCA-based diagnostic assays. However, the chemical (or nonenzymatic) cyclization of DNA oligonuc
    • a) The circular DNA template used in the RCA process can be synthesized enzymatically or chemically through the intramolecular ligation of phosphate and hydroxy end groups. In the enzymatic synthesis (see Ref. [15] for a typical protocol), the two reactive ends of a linear DNA precursor are joined by an enzyme (e.g., T4 DNA ligase). The enzymatic synthesis proceeds efficiently (>90% yield) for relatively large DNA substrates, but may not be suitable for making small circular DNA (<30 nucleotides (nt), and particularly those <10 nt), presumably as a result of inadequate saturation of the enzyme binding sites and/or the strain induced upon the ring closure of short oligonucleotides (see Refs. [1b-d]). This shortcoming might be an obstacle to the use of the RCA method in some cases, as enzymatic synthesis is the most commonly used strategy for the creation of the circular DNA template in RCA-based diagnostic assays. However, the chemical (or nonenzymatic) cyclization of DNA oligonucleotides can also be used to produce circular DNA molecules in reasonably good yield (up to 85%) for both small (<14 nt; see Refs. [1e,f]) and large circular templates (>15 nt; see Ref. [1b]). For example, chemical ligation was used to produce a circular DNA molecule with 13 nt: the smallest circular DNA molecule studied to date that can be used effectively in an RCA process (see Ref. [1g]).
  • 2
    • 0029037839 scopus 로고    scopus 로고
    • E. Rubin, S. Rumney IV, S. Wang, E. T. Kool, Nucleic Acids Res. 1995, 23, 3547-3553;
    • b) E. Rubin, S. Rumney IV, S. Wang, E. T. Kool, Nucleic Acids Res. 1995, 23, 3547-3553;
  • 8
    • 0033576703 scopus 로고    scopus 로고
    • Angew. Chem. Int. Ed. 1999, 38, 3654-3657;
    • (1999) Angew. Chem. Int. Ed , vol.38 , pp. 3654-3657
  • 19
    • 0035134454 scopus 로고    scopus 로고
    • i) M. M. Shi, Clin. Chem. 2001, 47, 164-172;
    • (2001) Clin. Chem , vol.47 , pp. 164-172
    • Shi, M.M.1
  • 57
    • 20644466231 scopus 로고    scopus 로고
    • Angew. Chem. Int. Ed. 2005, 44, 3582-3585.
    • (2005) Angew. Chem. Int. Ed , vol.44 , pp. 3582-3585
  • 59
    • 33746317783 scopus 로고    scopus 로고
    • Angew. Chem. Int. Ed. 2006, 45, 2409-2413.
    • (2006) Angew. Chem. Int. Ed , vol.45 , pp. 2409-2413
  • 62
    • 33845210113 scopus 로고    scopus 로고
    • Angew. Chem. Int. Ed. 2006, 45, 7537-7539;
    • (2006) Angew. Chem. Int. Ed , vol.45 , pp. 7537-7539
  • 73
    • 37549064725 scopus 로고    scopus 로고
    • Angew. Chem. Int. Ed. 2008, 47, 126-130.
    • (2008) Angew. Chem. Int. Ed , vol.47 , pp. 126-130
  • 80
    • 85015106657 scopus 로고    scopus 로고
    • b) N. C. Seeman, Nature 2003, 421, 427-431;
    • (2003) Nature , vol.421 , pp. 427-431
    • Seeman, N.C.1
  • 81
    • 0346338110 scopus 로고    scopus 로고
    • c) N. C. Seeman, Chem. Biol. 2003, 10, 1151-1159;
    • (2003) Chem. Biol , vol.10 , pp. 1151-1159
    • Seeman, N.C.1
  • 99
    • 33747893739 scopus 로고    scopus 로고
    • Angew. Chem. Int. Ed. 2006, 45, 5296-5301;
    • (2006) Angew. Chem. Int. Ed , vol.45 , pp. 5296-5301
  • 101
    • 22744459539 scopus 로고    scopus 로고
    • Angew. Chem. Int. Ed. 2005, 44, 4333-4338.
    • (2005) Angew. Chem. Int. Ed , vol.44 , pp. 4333-4338
  • 102
  • 104
    • 10044258525 scopus 로고    scopus 로고
    • Angew. Chem. Int. Ed. 2004, 43, 6042-6108;
    • (2004) Angew. Chem. Int. Ed , vol.43 , pp. 6042-6108


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.