메뉴 건너뛰기




Volumn 5109 LNBI, Issue , 2008, Pages 177-191

Combining one-class classification models based on diverse biological data for prediction of protein-protein interactions

Author keywords

[No Author keywords available]

Indexed keywords

CLASSIFICATION (OF INFORMATION); FLOW INTERACTIONS; FORECASTING; GOLD; ROUGH SET THEORY; STANDARDS;

EID: 48249133726     PISSN: 03029743     EISSN: 16113349     Source Type: Book Series    
DOI: 10.1007/978-3-540-69828-9_18     Document Type: Conference Paper
Times cited : (3)

References (43)
  • 2
    • 0035836765 scopus 로고    scopus 로고
    • A comprehensive two-hybrid analysis to explore the yeast protein interactome
    • Ito, T., Chiba, T., Ozawa, R., Yoshida, M., Hattori, M., Sakaki, Y.: A comprehensive two-hybrid analysis to explore the yeast protein interactome. Proc. Natl. Acad. Sci. 98, 4569-4574 (2001)
    • (2001) Proc. Natl. Acad. Sci , vol.98 , pp. 4569-4574
    • Ito, T.1    Chiba, T.2    Ozawa, R.3    Yoshida, M.4    Hattori, M.5    Sakaki, Y.6
  • 3
    • 0037050026 scopus 로고    scopus 로고
    • Gavin, A.C., Bosche, M., Krause, R., Grandi, P., Marzioch, M., Bauer, A., Schultz, J., Rick, J.M., Michon, A.M., Cruciat, C.M., Remor, M., Hofert, C., Schelder, M., Brajenovic, M., Ruffner, H., Merino, A., Klein, K., Hudak, M., Dickson, D., Rudi, T., Gnau, V., Bauch, A., Bastuck, S., Huhse, B., Leutwein, C., Heurtier, M.A., Copley, R.R., Edelmann, A., Querfurth, E., Rybin, V., Drewes, G., Raida, M., Bouwmeester, T., Bork, P., Seraphin, B., Kuster, B., Neubauer, G., Superti-Furga, G.: Functional organization of the yeast proteome by systematic analysis of protein complexes. Nature 415, 141-147 (2002)
    • Gavin, A.C., Bosche, M., Krause, R., Grandi, P., Marzioch, M., Bauer, A., Schultz, J., Rick, J.M., Michon, A.M., Cruciat, C.M., Remor, M., Hofert, C., Schelder, M., Brajenovic, M., Ruffner, H., Merino, A., Klein, K., Hudak, M., Dickson, D., Rudi, T., Gnau, V., Bauch, A., Bastuck, S., Huhse, B., Leutwein, C., Heurtier, M.A., Copley, R.R., Edelmann, A., Querfurth, E., Rybin, V., Drewes, G., Raida, M., Bouwmeester, T., Bork, P., Seraphin, B., Kuster, B., Neubauer, G., Superti-Furga, G.: Functional organization of the yeast proteome by systematic analysis of protein complexes. Nature 415, 141-147 (2002)
  • 4
    • 0037050004 scopus 로고    scopus 로고
    • Ho, Y., Gruhler, A., Heilbut, A., Bader, G.D., Moore, L., Adams, S.L., Millar, A., Taylor, P., Bennett, K., Boutilier, K., Yang, L., Wolting, C., Donaldson, I., Schandorff, S., Shewnarane, J., Vo, M., Taggart, J., Goudreault, M., Muskat, B., Alfarano, C., Dewar, D., Lin, Z., Michalickova, K., Willems, A.R., Sassi, H., Nielsen, P.A., Rasmussen, K.J., Andersen, J.R., Johansen, L.E., Hansen, L.H., Jespersen, H., Podtelejnikov, A., Nielsen, E., Crawford, J., Poulsen, V., Srensen, B.D., Matthiesen, J., Hendrickson, R.C., Gleeson, F., Pawson, T., Moran, M.F., Durocher, D., Mann, M., Hogue, C.W.V., Figeys, D., Tyers, M.: Systematic identification of protein complexes in saccharomyces cerevisiae by mass spectrometry. Nature 415, 180-183 (2002)
    • Ho, Y., Gruhler, A., Heilbut, A., Bader, G.D., Moore, L., Adams, S.L., Millar, A., Taylor, P., Bennett, K., Boutilier, K., Yang, L., Wolting, C., Donaldson, I., Schandorff, S., Shewnarane, J., Vo, M., Taggart, J., Goudreault, M., Muskat, B., Alfarano, C., Dewar, D., Lin, Z., Michalickova, K., Willems, A.R., Sassi, H., Nielsen, P.A., Rasmussen, K.J., Andersen, J.R., Johansen, L.E., Hansen, L.H., Jespersen, H., Podtelejnikov, A., Nielsen, E., Crawford, J., Poulsen, V., Srensen, B.D., Matthiesen, J., Hendrickson, R.C., Gleeson, F., Pawson, T., Moran, M.F., Durocher, D., Mann, M., Hogue, C.W.V., Figeys, D., Tyers, M.: Systematic identification of protein complexes in saccharomyces cerevisiae by mass spectrometry. Nature 415, 180-183 (2002)
  • 5
    • 0037161731 scopus 로고    scopus 로고
    • Comparative assessment of large-scale data sets of protein-protein interactions
    • von Mering, C., Krause, R., Snel, B., Cornell, M., Oliver, S.G., Fields, S., Bork, P.: Comparative assessment of large-scale data sets of protein-protein interactions. Nature 417, 399-403 (2002)
    • (2002) Nature , vol.417 , pp. 399-403
    • von Mering, C.1    Krause, R.2    Snel, B.3    Cornell, M.4    Oliver, S.G.5    Fields, S.6    Bork, P.7
  • 7
    • 13244265581 scopus 로고    scopus 로고
    • Information assessment on predicting protein-protein interactions
    • Lin, N., Wu, B., Jansen, R., Gerstein, M., Zhao, H.: Information assessment on predicting protein-protein interactions. BMC Bioinformatics 5(154) (2004)
    • (2004) BMC Bioinformatics , vol.5 , Issue.154
    • Lin, N.1    Wu, B.2    Jansen, R.3    Gerstein, M.4    Zhao, H.5
  • 8
    • 2942541277 scopus 로고    scopus 로고
    • Predicting co-complexed protein pairs using genomic and proteomic data integration
    • Zhang, L., Wong, S., King, O., Roth, F.: Predicting co-complexed protein pairs using genomic and proteomic data integration. BMC Bioinformatics 5(38) (2004)
    • (2004) BMC Bioinformatics , vol.5 , Issue.38
    • Zhang, L.1    Wong, S.2    King, O.3    Roth, F.4
  • 9
    • 22244447463 scopus 로고    scopus 로고
    • Assessing the limits of genomic data integration for predicting protein networks
    • Lu, L.J., Xia, Y., Paccanaro, A., Yu, H., Gerstein, M.: Assessing the limits of genomic data integration for predicting protein networks. Genome Res. 15, 945-953 (2005)
    • (2005) Genome Res , vol.15 , pp. 945-953
    • Lu, L.J.1    Xia, Y.2    Paccanaro, A.3    Yu, H.4    Gerstein, M.5
  • 10
    • 24744435534 scopus 로고    scopus 로고
    • Kernel methods for predicting protein-protein interactions
    • Ben-Hur, A., Noble, W.S.: Kernel methods for predicting protein-protein interactions. Bioinformatics 21(suppl. 1), i38-i46 (2005)
    • (2005) Bioinformatics , vol.21 , Issue.SUPPL. 1
    • Ben-Hur, A.1    Noble, W.S.2
  • 11
    • 33646018046 scopus 로고    scopus 로고
    • Evaluation of different biological data and computational classification methods for use in protein interaction prediction
    • Qi, Y., Bar-Joseph, Z., Klein-Seetharaman, J.: Evaluation of different biological data and computational classification methods for use in protein interaction prediction. Proteins: Structure, Function, and Bioinformatics 63, 490-500 (2006)
    • (2006) Proteins: Structure, Function, and Bioinformatics , vol.63 , pp. 490-500
    • Qi, Y.1    Bar-Joseph, Z.2    Klein-Seetharaman, J.3
  • 12
    • 33947328242 scopus 로고    scopus 로고
    • Choosing negative examples for the prediction of protein-protein interactions
    • Ben-Hur, A., Noble, W.S.: Choosing negative examples for the prediction of protein-protein interactions. BMC Bioinformatics 7(S2) (2006)
    • (2006) BMC Bioinformatics , vol.7 , Issue.S2
    • Ben-Hur, A.1    Noble, W.S.2
  • 13
    • 84861111603 scopus 로고    scopus 로고
    • Prediction of protein-protein interactions using one-class classification methods and integrating diverse data
    • Reyes, J.A., Gilbert, D.: Prediction of protein-protein interactions using one-class classification methods and integrating diverse data. Journal of Integrative Bioinformatics 4 (2007)
    • (2007) Journal of Integrative Bioinformatics , vol.4
    • Reyes, J.A.1    Gilbert, D.2
  • 14
    • 0942266514 scopus 로고    scopus 로고
    • Support vector data description
    • Tax, D.M.J., Duin, R.P.W.: Support vector data description. Machine Learning 54, 45-66 (2004)
    • (2004) Machine Learning , vol.54 , pp. 45-66
    • Tax, D.M.J.1    Duin, R.P.W.2
  • 15
    • 27144549260 scopus 로고    scopus 로고
    • Editorial: Special issue on learning from imbalanced data sets
    • Chawla, N.V., Japkowicz, N., Kotcz, A.: Editorial: special issue on learning from imbalanced data sets. SIGKDD Explorations 6, 1-6 (2004)
    • (2004) SIGKDD Explorations , vol.6 , pp. 1-6
    • Chawla, N.V.1    Japkowicz, N.2    Kotcz, A.3
  • 17
    • 48249125693 scopus 로고    scopus 로고
    • An assessment of machine and statistical learning approaches to inferring networks of protein-protein interactions
    • Browne, F., Wang, H., Zheng, H., Azuaje, F.: An assessment of machine and statistical learning approaches to inferring networks of protein-protein interactions. Journal of Integrative Bioinformatics 3 (2006)
    • (2006) Journal of Integrative Bioinformatics , vol.3
    • Browne, F.1    Wang, H.2    Zheng, H.3    Azuaje, F.4
  • 23
    • 0002714543 scopus 로고    scopus 로고
    • Making large-scale support vector machine learning practical
    • Schölkopf, B, Burges, C, Smola, A, eds, MIT Press, Cambridge
    • Joachims, T.: Making large-scale support vector machine learning practical. In: Schölkopf, B., Burges, C., Smola, A. (eds.) Advances in kernel methods: support vector learning, pp. 169-184. MIT Press, Cambridge (1999)
    • (1999) Advances in kernel methods: Support vector learning , pp. 169-184
    • Joachims, T.1
  • 26
    • 34548583420 scopus 로고    scopus 로고
    • Edge-based scoring and searching method for identifying condition-responsive protein protein interaction sub-network
    • Guo, Z., Li, Y., Gong, X., Yao, C., Ma, W., Wang, D., Li, Y., Zhu, J., Zhang, M., Yang, D., Wang, J.: Edge-based scoring and searching method for identifying condition-responsive protein protein interaction sub-network. Bioinformatics 23, 2121-2128 (2007)
    • (2007) Bioinformatics , vol.23 , pp. 2121-2128
    • Guo, Z.1    Li, Y.2    Gong, X.3    Yao, C.4    Ma, W.5    Wang, D.6    Li, Y.7    Zhu, J.8    Zhang, M.9    Yang, D.10    Wang, J.11
  • 28
    • 1842526090 scopus 로고    scopus 로고
    • Promate: A structure based prediction program to identify the location of protein-protein binding sites
    • Neuvirth, H., Raz, R., Schreiber, G.: Promate: a structure based prediction program to identify the location of protein-protein binding sites. J. Mol. Biol. 338, 181-199 (2004)
    • (2004) J. Mol. Biol , vol.338 , pp. 181-199
    • Neuvirth, H.1    Raz, R.2    Schreiber, G.3
  • 29
    • 33646122452 scopus 로고    scopus 로고
    • An algorithm for predicting protein-protein interaction sites: Abnormally exposed amino acid residues and secondary structure elements
    • Hoskins, J., Lovell, S., Blundell, T.L.: An algorithm for predicting protein-protein interaction sites: Abnormally exposed amino acid residues and secondary structure elements. Protein Sci. 15, 1017-1029 (2006)
    • (2006) Protein Sci , vol.15 , pp. 1017-1029
    • Hoskins, J.1    Lovell, S.2    Blundell, T.L.3
  • 30
    • 34548141882 scopus 로고    scopus 로고
    • Secondary structure based analysis and classification of biological interfaces: Identification of binding motifs in protein protein interactions
    • Guharoy, M., Chakrabarti, P.: Secondary structure based analysis and classification of biological interfaces: identification of binding motifs in protein protein interactions. Bioinformatics 23, 1909-1918 (2007)
    • (2007) Bioinformatics , vol.23 , pp. 1909-1918
    • Guharoy, M.1    Chakrabarti, P.2
  • 31
    • 34548767667 scopus 로고    scopus 로고
    • Interaction-site prediction for protein complexes: A critical assessment
    • Zhou, H.X., Qin, S.: Interaction-site prediction for protein complexes: a critical assessment. Bioinformatics 23, 2203-2209 (2007)
    • (2007) Bioinformatics , vol.23 , pp. 2203-2209
    • Zhou, H.X.1    Qin, S.2
  • 32
    • 23144465987 scopus 로고    scopus 로고
    • SCRATCH: A protein structure and structural feature prediction server
    • Cheng, J., Randall, A.Z., Sweredoski, M.J., Baldi, P.: SCRATCH: a protein structure and structural feature prediction server. Nucl. Acids Res. 33(suppl-2), W72-W76 (2005)
    • (2005) Nucl. Acids Res , vol.33 , Issue.SUPPL.-2
    • Cheng, J.1    Randall, A.Z.2    Sweredoski, M.J.3    Baldi, P.4
  • 34
    • 33745616114 scopus 로고    scopus 로고
    • A machine learning information retrieval approach to protein fold recognition
    • Cheng, J., Baldi, P.: A machine learning information retrieval approach to protein fold recognition. Bioinformatics 22, 1456-1463 (2006)
    • (2006) Bioinformatics , vol.22 , pp. 1456-1463
    • Cheng, J.1    Baldi, P.2
  • 35
    • 80053403826 scopus 로고    scopus 로고
    • Dietterich, T.G.: Ensemble methods in machine learning. In: Kittler, J., Roli, F. (eds.) MCS 2000. LNCS, 1857, pp. 1-15. Springer, Heidelberg (2000)
    • Dietterich, T.G.: Ensemble methods in machine learning. In: Kittler, J., Roli, F. (eds.) MCS 2000. LNCS, vol. 1857, pp. 1-15. Springer, Heidelberg (2000)
  • 36
    • 0037403516 scopus 로고    scopus 로고
    • Measures of diversity in classifier ensembles and their relationship with the ensemble accuracy
    • Kuncheva, L.I., Whitaker, C.J.: Measures of diversity in classifier ensembles and their relationship with the ensemble accuracy. Machine Learning 51, 181-207 (2003)
    • (2003) Machine Learning , vol.51 , pp. 181-207
    • Kuncheva, L.I.1    Whitaker, C.J.2
  • 37
    • 10444238133 scopus 로고    scopus 로고
    • Diversity in search strategies for ensemble feature selection
    • Tsymbal, A., Pechenizkiy, M., Cunningham, P.: Diversity in search strategies for ensemble feature selection. Information Fusion 6, 83-98 (2005)
    • (2005) Information Fusion , vol.6 , pp. 83-98
    • Tsymbal, A.1    Pechenizkiy, M.2    Cunningham, P.3
  • 41
    • 0002872346 scopus 로고    scopus 로고
    • Bias plus variance decomposition for zero-one loss functions
    • Morgan Kaufmann, San Francisco
    • Kohavi, R., Wolpert, D.: Bias plus variance decomposition for zero-one loss functions. In: 13th International Conference on Machine Learning, pp. 275-283. Morgan Kaufmann, San Francisco (1996)
    • (1996) 13th International Conference on Machine Learning , pp. 275-283
    • Kohavi, R.1    Wolpert, D.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.