메뉴 건너뛰기




Volumn 16, Issue 7, 2006, Pages 747-761

Variable reconstruction and sensor fault identification using canonical variate analysis

Author keywords

Canonical variate analysis; Fault detection; Sensor fault identification; Variable reconstruction

Indexed keywords

ALGORITHMS; DYNAMIC PROGRAMMING; FAULT TOLERANT COMPUTER SYSTEMS; STATE SPACE METHODS;

EID: 33646191653     PISSN: 09591524     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.jprocont.2005.12.001     Document Type: Article
Times cited : (37)

References (22)
  • 2
    • 0035546347 scopus 로고    scopus 로고
    • Consistent dynamic PCA based on error-in-variables subspace identification
    • Li W., and Qin S.J. Consistent dynamic PCA based on error-in-variables subspace identification. Journal of Process Control 11 (2001) 661-678
    • (2001) Journal of Process Control , vol.11 , pp. 661-678
    • Li, W.1    Qin, S.J.2
  • 3
    • 0031208457 scopus 로고    scopus 로고
    • Statistical monitoring of multivariable dynamic processes with state space model
    • Negiz A., and Cinar A. Statistical monitoring of multivariable dynamic processes with state space model. AIChE Journal 43 (1997) 2002-2020
    • (1997) AIChE Journal , vol.43 , pp. 2002-2020
    • Negiz, A.1    Cinar, A.2
  • 4
    • 0034621334 scopus 로고    scopus 로고
    • Fault detection in industrial processes using canonical variate analysis and dynamic principal component analysis
    • Russell E.L., Chiang L.H., and Braatz R.D. Fault detection in industrial processes using canonical variate analysis and dynamic principal component analysis. Chemometrics and Intelligent Laboratory Systems 51 (2000) 81-93
    • (2000) Chemometrics and Intelligent Laboratory Systems , vol.51 , pp. 81-93
    • Russell, E.L.1    Chiang, L.H.2    Braatz, R.D.3
  • 6
    • 0037098685 scopus 로고    scopus 로고
    • Statistical performance monitoring of dynamic multivariate processes using state space modeling
    • Simoglou A., Martin E.B., and Morris A.J. Statistical performance monitoring of dynamic multivariate processes using state space modeling. Computers and Chemical Engineering 26 (2002) 909-920
    • (2002) Computers and Chemical Engineering , vol.26 , pp. 909-920
    • Simoglou, A.1    Martin, E.B.2    Morris, A.J.3
  • 7
    • 0025532490 scopus 로고    scopus 로고
    • W.E. Larimore, Canonical variate analysis in identification, filtering, and adaptive control, in: Proceedings of IEEE Conference on Decision and Control, Honolulu, Hawaii, 1990, pp. 596-604.
  • 8
    • 33646167450 scopus 로고    scopus 로고
    • B.M. Wise, N.L. Ricker, Recent advances in multivariate statistical process control: Improving robustness and sensitivity, in: Proceedings of the IFAC ADCHEM Symposium, 1991, pp. 125-130.
  • 9
    • 0030269512 scopus 로고    scopus 로고
    • Identification of faulty sensors using principal component analysis
    • Dunia R., Qin S.J., Edgar T.F., and McAvoy T.J. Identification of faulty sensors using principal component analysis. AIChE Journal 42 (1996) 2797-2812
    • (1996) AIChE Journal , vol.42 , pp. 2797-2812
    • Dunia, R.1    Qin, S.J.2    Edgar, T.F.3    McAvoy, T.J.4
  • 13
    • 0036685755 scopus 로고    scopus 로고
    • Dealing with missing data in MSPC: several method, different interpretations, some examples
    • Arteaga F., and Ferrer A. Dealing with missing data in MSPC: several method, different interpretations, some examples. Journal of Chemometrics 16 (2002) 408-418
    • (2002) Journal of Chemometrics , vol.16 , pp. 408-418
    • Arteaga, F.1    Ferrer, A.2
  • 14
    • 51649182225 scopus 로고
    • Markovian representation of stochastic processes and its application to the analysis of autoregressive moving average processes
    • Akaike H. Markovian representation of stochastic processes and its application to the analysis of autoregressive moving average processes. Annals of the Institute of Statistical Mathematics 26 (1974) 363-387
    • (1974) Annals of the Institute of Statistical Mathematics , vol.26 , pp. 363-387
    • Akaike, H.1
  • 15
    • 0016439532 scopus 로고
    • Markovian representation of stochastic processes by canonical variables
    • Akaike H. Markovian representation of stochastic processes by canonical variables. SIAM Journal on Control 13 (1975) 162-173
    • (1975) SIAM Journal on Control , vol.13 , pp. 162-173
    • Akaike, H.1
  • 18
    • 85041932998 scopus 로고
    • Maximum likelihood identification of Gaussian autoregressive moving average model
    • Akaike H. Maximum likelihood identification of Gaussian autoregressive moving average model. Biometrika 60 (1973) 255-265
    • (1973) Biometrika , vol.60 , pp. 255-265
    • Akaike, H.1
  • 19
    • 77956828132 scopus 로고
    • Canonical correlation analysis of time series and the use of an information criterion
    • Mehra R.K., and Lainiotis D.G. (Eds), Academic Press, New York
    • Akaike H. Canonical correlation analysis of time series and the use of an information criterion. In: Mehra R.K., and Lainiotis D.G. (Eds). System Identification: Advances and Case Studies (1976), Academic Press, New York 27-96
    • (1976) System Identification: Advances and Case Studies , pp. 27-96
    • Akaike, H.1
  • 20
    • 0029771137 scopus 로고    scopus 로고
    • Designing control charts using an empirical reference distribution
    • Willemain T.R., and Runger G.C. Designing control charts using an empirical reference distribution. Journal of Quality Technology 28 (1996) 31-38
    • (1996) Journal of Quality Technology , vol.28 , pp. 31-38
    • Willemain, T.R.1    Runger, G.C.2
  • 22
    • 0035427805 scopus 로고    scopus 로고
    • Fault diagnosis with multivariate statistical models Part I: Using steady state fault signatures
    • Yoon S., and MacGregor J.F. Fault diagnosis with multivariate statistical models Part I: Using steady state fault signatures. Journal of Process Control 11 (2001) 387-400
    • (2001) Journal of Process Control , vol.11 , pp. 387-400
    • Yoon, S.1    MacGregor, J.F.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.