-
1
-
-
4544238634
-
A lekage-tolerant high fan-in dynamic circuit design style
-
Mar.
-
H. Mahmoodi-Meimand and K. Roy, “A lekage-tolerant high fan-in dynamic circuit design style,” IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 51, no. 3, pp. 495–503, Mar. 2004.
-
(2004)
IEEE Trans. Circuits Syst. I, Reg. Papers
, vol.51
, Issue.3
, pp. 495-503
-
-
Mahmoodi-Meimand, H.1
Roy, K.2
-
2
-
-
0029359285
-
1-V power supply high-speed digital circuit technology with multithreshold-voltage CMOS
-
Aug.
-
S. Mutoh, T. Douseki, Y. Matsuya, T. Aoki, S. Shigematsu, and J. Yamda, “1-V power supply high-speed digital circuit technology with multithreshold-voltage CMOS,” IEEE J. Solid-State Circuits, vol. 30, no. 8, pp. 847–854, Aug. 1995.
-
(1995)
IEEE J. Solid-State Circuits
, vol.30
, Issue.8
, pp. 847-854
-
-
Mutoh, S.1
Douseki, T.2
Matsuya, Y.3
Aoki, T.4
Shigematsu, S.5
Yamda, J.6
-
3
-
-
16244409255
-
Microachitectural techniques for power gating of execution units
-
Z. Hu, A. Buyuktosunoglu, V. Srinivasan, V. Zyunban, H. Jacobson, and P. Bose, “Microachitectural techniques for power gating of execution units,” in Proc. Int. Symp. Low-Power Electron. Design, 2004, pp. 32–37.
-
(2004)
Proc. Int. Symp. Low-Power Electron. Design
, pp. 32-37
-
-
Hu, Z.1
Buyuktosunoglu, A.2
Srinivasan, V.3
Zyunban, V.4
Jacobson, H.5
Bose, P.6
-
4
-
-
1542329520
-
Understanding and minimizing ground bounce during mode transition of power gating structure
-
Aug.
-
S. Kim, S. V. Kosonocky, and D. R. Knebel, “Understanding and minimizing ground bounce during mode transition of power gating structure,” in Proc. Int. Symp. Low-Power Electron. Design, Aug. 2003, pp. 22–25.
-
(2003)
Proc. Int. Symp. Low-Power Electron. Design
, pp. 22-25
-
-
Kim, S.1
Kosonocky, S.V.2
Knebel, D.R.3
-
5
-
-
27944510616
-
An effective power mode transition technique in MTCMOS circuits
-
Jun.
-
A. Abdollahi, F. Fallah, and M. Pedram, “An effective power mode transition technique in MTCMOS circuits,” in Proc. Design Autom. Conf., Jun. 2005, pp. 37–42.
-
(2005)
Proc. Design Autom. Conf.
, pp. 37-42
-
-
Abdollahi, A.1
Fallah, F.2
Pedram, M.3
-
6
-
-
34547608061
-
Distributed active decoupling capacitors for on-chip supply noise cancellation in digital VLSI circuits
-
J. Gu, R. Harjani, and C. Kim, “Distributed active decoupling capacitors for on-chip supply noise cancellation in digital VLSI circuits,” in Proc. IEEE Symp. VLSI Circuits, 2006, pp. 216–217.
-
(2006)
Proc. IEEE Symp. VLSI Circuits
, pp. 216-217
-
-
Gu, J.1
Harjani, R.2
Kim, C.3
-
7
-
-
0031641123
-
A novel powering-down scheme for low Vt CMOS circuits
-
K. Kumagai, J. Iwaki, H. Suzuki, T. Yamada, and S. Kurosawa, “A novel powering-down scheme for low Vt CMOS circuits,” in Dig. Tech. Papers IEEE Symp. VLSI Circuits, 1998, pp. 44–45.
-
(1998)
Dig. Tech. Papers IEEE Symp. VLSI Circuits
, pp. 44-45
-
-
Kumagai, K.1
Iwaki, J.2
Suzuki, H.3
Yamada, T.4
Kurosawa, S.5
-
8
-
-
85008059854
-
Integrated Circuit Low Leakage Power Circuitry for Use With an Advanced CMOS Process
-
B. R. McDaniel and L. T. Clark, “Integrated Circuit Low Leakage Power Circuitry for Use With an Advanced CMOS Process,” U.S. Patent #6 166985, 2000.
-
(2000)
U.S. Patent #6 166985
-
-
McDaniel, B.R.1
Clark, L.T.2
-
9
-
-
84893688165
-
Low swing signaling using a dynamic diode-connected driver
-
M. Ferretti and P. A. Beerel, “Low swing signaling using a dynamic diode-connected driver,” in Proc. Eur. Solid-State Circuits, 2001, pp. 369–372.
-
(2001)
Proc. Eur. Solid-State Circuits
, pp. 369-372
-
-
Ferretti, M.1
Beerel, P.A.2
-
10
-
-
34547583066
-
Pseudo dual supply voltage domino logic
-
Aug.
-
A. U. Diril, Y. S. Dhillon, A. Chatterjee, and A. D. Singh, “Pseudo dual supply voltage domino logic,” J. Low Power Electron., vol. 1, no. 2, pp. 145–152, Aug. 2005.
-
(2005)
J. Low Power Electron
, vol.1
, Issue.2
, pp. 145-152
-
-
Diril, A.U.1
Dhillon, Y.S.2
Chatterjee, A.3
Singh, A.D.4
-
11
-
-
16244390532
-
Managing standby and active mode leakage power in deep-submicron design
-
Aug.
-
L. T. Clark, R. Patel, and T. S. Beatty, “Managing standby and active mode leakage power in deep-submicron design,” in Proc. Int. Symp. Low-Power Electron. Design, Aug. 2004, pp. 274–279.
-
(2004)
Proc. Int. Symp. Low-Power Electron. Design
, pp. 274-279
-
-
Clark, L.T.1
Patel, R.2
Beatty, T.S.3
-
12
-
-
84886734078
-
Power gating with multiple sleep modes
-
Mar.
-
K. Agarwal, H. Deogun, D. Sylvester, and K. Nowka, “Power gating with multiple sleep modes,” in Proc. Int. Symp. Quality Electronic Design, Mar. 2006, pp. 633–637.
-
(2006)
Proc. Int. Symp. Quality Electronic Design
, pp. 633-637
-
-
Agarwal, K.1
Deogun, H.2
Sylvester, D.3
Nowka, K.4
-
13
-
-
0242468185
-
16.7-fa/cell tunnel-leakage-suppressed 16-Mb SRAM for handling cosmic-ray-induced multierros
-
Nov.
-
K. Osada, Y. Saitoh, E. Ibe, and K. Ishibashi, “16.7-fa/cell tunnel-leakage-suppressed 16-Mb SRAM for handling cosmic-ray-induced multierros,” IEEE J. Solid-State Circuits, vol. 38, no. 11, pp. 1952–1957, Nov. 2003.
-
(2003)
IEEE J. Solid-State Circuits
, vol.38
, Issue.11
, pp. 1952-1957
-
-
Osada, K.1
Saitoh, Y.2
Ibe, E.3
Ishibashi, K.4
-
14
-
-
4544335291
-
Reverse-body bias and supply collapse for low effective standby power
-
Sep.
-
L. T. Clark, M. Morrow, and W. Brown, “Reverse-body bias and supply collapse for low effective standby power,” IEEE Trans. Very Large Scale Integration (VLSI) Syst., vol. 12, no. 9, pp. 947–955, Sep. 2004.
-
(2004)
IEEE Trans. Very Large Scale Integration (VLSI) Syst.
, vol.12
, Issue.9
, pp. 947-955
-
-
Clark, L.T.1
Morrow, M.2
Brown, W.3
-
15
-
-
18744365842
-
SRAM design on 65-nm CMOS technology with dynamic sleep transistor for leakage reduction
-
Apr.
-
K. Zhang, U. Bhattacharya, Z. Chen, F. Hamzaoglu, D. Murry, N. Vallepalli, Y. Wang, B. Zheng, and M. Bohr, “SRAM design on 65-nm CMOS technology with dynamic sleep transistor for leakage reduction,” IEEE J. Solid-State Circuits, vol. 40, no. 4, pp. 895–901, Apr. 2005.
-
(2005)
IEEE J. Solid-State Circuits
, vol.40
, Issue.4
, pp. 895-901
-
-
Zhang, K.1
Bhattacharya, U.2
Chen, Z.3
Hamzaoglu, F.4
Murry, D.5
Vallepalli, N.6
Wang, Y.7
Zheng, B.8
Bohr, M.9
|