메뉴 건너뛰기




Volumn 22, Issue 4, 2004, Pages 275-284

A method for quantifying and visualizing the diversity of QSAR models

Author keywords

Data mining; Feature selection; Multi dimensional scaling; Nonlinear mapping; Point set similarity; Quantitative structure activity relationships; Stochastic proximity embedding

Indexed keywords

ALGORITHMS; CORRELATION METHODS; FEATURE EXTRACTION; RANDOM PROCESSES;

EID: 0842289047     PISSN: 10933263     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.jmgm.2003.10.001     Document Type: Article
Times cited : (24)

References (24)
  • 2
    • 0034265479 scopus 로고    scopus 로고
    • Unsupervised forward selection: A method for eliminating redundant variables
    • Whitley D.C., Ford M.G., Livingstone D.J. Unsupervised forward selection: a method for eliminating redundant variables. J. Chem. Inf. Comput. Sci. 40:2000;1160-1168.
    • (2000) J. Chem. Inf. Comput. Sci. , vol.40 , pp. 1160-1168
    • Whitley, D.C.1    Ford, M.G.2    Livingstone, D.J.3
  • 3
    • 84987070573 scopus 로고
    • Systematic QSAR procedures with quantum chemical descriptors
    • Kikuchi O. Systematic QSAR procedures with quantum chemical descriptors. Quant. Struct-Act. Relat. 6:1987;179-184.
    • (1987) Quant. Struct-Act. Relat. , vol.6 , pp. 179-184
    • Kikuchi, O.1
  • 4
    • 0024349286 scopus 로고
    • Corchop - An interactive routine for the dimension reduction of large QSAR data sets
    • Livingstone D.J., Rahr E. Corchop - an interactive routine for the dimension reduction of large QSAR data sets. Quant. Struct-Act. Relat. 8:1989;103-108.
    • (1989) Quant. Struct-Act. Relat. , vol.8 , pp. 103-108
    • Livingstone, D.J.1    Rahr, E.2
  • 5
    • 0029230341 scopus 로고
    • Automated descriptor selection for quantitative structure-activity relationships using generalized simulated annealing
    • Sutter J.M., Dixon S.L., Jurs P.C. Automated descriptor selection for quantitative structure-activity relationships using generalized simulated annealing. J. Chem. Inf. Comput. Sci. 35:1995;77-84.
    • (1995) J. Chem. Inf. Comput. Sci. , vol.35 , pp. 77-84
    • Sutter, J.M.1    Dixon, S.L.2    Jurs, P.C.3
  • 6
    • 0028467707 scopus 로고
    • Application of genetic function approximation to quantitative structure-activity relationships and quantitative structure-property relationships
    • Rogers D.R., Hopfinger A.J. Application of genetic function approximation to quantitative structure-activity relationships and quantitative structure-property relationships. J. Chem. Inf. Comput. Sci. 34:1994;854-866.
    • (1994) J. Chem. Inf. Comput. Sci. , vol.34 , pp. 854-866
    • Rogers, D.R.1    Hopfinger, A.J.2
  • 7
    • 0029970338 scopus 로고    scopus 로고
    • Evolutionary optimization in quantitative structure-activity relationship: An application of genetic neural networks
    • So S., Karplus M. Evolutionary optimization in quantitative structure-activity relationship: an application of genetic neural networks. J. Med. Chem. 39:1996;1521-1530.
    • (1996) J. Med. Chem. , vol.39 , pp. 1521-1530
    • So, S.1    Karplus, M.2
  • 8
    • 0035438386 scopus 로고    scopus 로고
    • Toward an optimal procedure for variable selection and QSAR model building
    • Yasri A., Hartsough D. Toward an optimal procedure for variable selection and QSAR model building. J. Chem. Inf. Comput. Sci. 41:2001;1218-1227.
    • (2001) J. Chem. Inf. Comput. Sci. , vol.41 , pp. 1218-1227
    • Yasri, A.1    Hartsough, D.2
  • 9
    • 0031084988 scopus 로고    scopus 로고
    • GA strategy for variable selection in QSAR studies: GA-based PLS analysis of calcium channel antagonists
    • Hasegawa K., Miyashita Y., Funatsu K. GA strategy for variable selection in QSAR studies: GA-based PLS analysis of calcium channel antagonists. J. Chem. Inf. Comput. Sci. 37:1997;306-310.
    • (1997) J. Chem. Inf. Comput. Sci. , vol.37 , pp. 306-310
    • Hasegawa, K.1    Miyashita, Y.2    Funatsu, K.3
  • 10
    • 0028548591 scopus 로고
    • Evolutionary programming applied to the development of quantitative structure-activity relationships and quantitative structure-property relationships
    • Luke B.T. Evolutionary programming applied to the development of quantitative structure-activity relationships and quantitative structure-property relationships. J. Chem. Inf. Comput. Sci. 34:1994;1279-1287.
    • (1994) J. Chem. Inf. Comput. Sci. , vol.34 , pp. 1279-1287
    • Luke, B.T.1
  • 11
    • 0035227873 scopus 로고    scopus 로고
    • A new method for building regression tree models for QSAR based on artificial ant colony systems
    • Izrailev S., Agrafiotis D.K. A new method for building regression tree models for QSAR based on artificial ant colony systems. J. Chem. Inf. Comput. Sci. 41:2001;176-180.
    • (2001) J. Chem. Inf. Comput. Sci. , vol.41 , pp. 176-180
    • Izrailev, S.1    Agrafiotis, D.K.2
  • 12
    • 0036581948 scopus 로고    scopus 로고
    • Variable selection for QSAR by artificial ant colony systems
    • Izrailev S., Agrafiotis D.K. Variable selection for QSAR by artificial ant colony systems. SAR QSAR Environ. Res. 13:2001;417-423.
    • (2001) SAR QSAR Environ. Res. , vol.13 , pp. 417-423
    • Izrailev, S.1    Agrafiotis, D.K.2
  • 13
    • 0037186503 scopus 로고    scopus 로고
    • Feature selection for structure-activity correlation using binary particle swarms
    • Agrafiotis D.K., Cedeño W. Feature selection for structure-activity correlation using binary particle swarms. J. Med. Chem. 45:2002;1098-1107.
    • (2002) J. Med. Chem. , vol.45 , pp. 1098-1107
    • Agrafiotis, D.K.1    Cedeño, W.2
  • 17
    • 0037059052 scopus 로고    scopus 로고
    • A self-organizing principle for learning nonlinear manifolds
    • Agrafiotis D.K., Xu H. A self-organizing principle for learning nonlinear manifolds. Proc. Natl. Acad. Sci. 99:2002;15869-15872.
    • (2002) Proc. Natl. Acad. Sci. , vol.99 , pp. 15869-15872
    • Agrafiotis, D.K.1    Xu, H.2
  • 18
    • 0038825237 scopus 로고    scopus 로고
    • Stochastic proximity embedding
    • Agrafiotis D.K. Stochastic proximity embedding. J. Comput. Chem. 24:2003;1215-1221.
    • (2003) J. Comput. Chem. , vol.24 , pp. 1215-1221
    • Agrafiotis, D.K.1
  • 19
    • 0031043056 scopus 로고    scopus 로고
    • A new method for analyzing protein sequence relationships based on Sammon maps
    • Agrafiotis D.K. A new method for analyzing protein sequence relationships based on Sammon maps. Protein Sci. 6:1997;287.
    • (1997) Protein Sci. , vol.6 , pp. 287
    • Agrafiotis, D.K.1
  • 20
    • 0042343683 scopus 로고    scopus 로고
    • Exploring the nonlinear geometry of sequence homology
    • Farnum M., Xu H., Agrafiotis D.K. Exploring the nonlinear geometry of sequence homology. Protein Sci. 12:2003;1604-1612.
    • (2003) Protein Sci. , vol.12 , pp. 1604-1612
    • Farnum, M.1    Xu, H.2    Agrafiotis, D.K.3
  • 21
    • 0033424378 scopus 로고    scopus 로고
    • Constructive bounds and exact expectations for the random assignment problem
    • Coppersmith D., Sorkin G.B. Constructive bounds and exact expectations for the random assignment problem. Random Struct. Alg. 15:1999;113-144.
    • (1999) Random Struct. Alg. , vol.15 , pp. 113-144
    • Coppersmith, D.1    Sorkin, G.B.2
  • 23
    • 0028493138 scopus 로고
    • Quantitative structure-activity relationships: Neural networks and inductive logic programming compared against statistical methods: I, the inhibition of dihydrofolate reductase by pyrimidines
    • Hirst J.D., King R.D., Sternberg M.J.E. Quantitative structure-activity relationships: neural networks and inductive logic programming compared against statistical methods: I, the inhibition of dihydrofolate reductase by pyrimidines. J. Comput.-Aided Mol. Design. 8:1994;405-420.
    • (1994) J. Comput.-Aided Mol. Design , vol.8 , pp. 405-420
    • Hirst, J.D.1    King, R.D.2    Sternberg, M.J.E.3
  • 24
    • 85030910868 scopus 로고    scopus 로고
    • United States Patents 5,463,564 (1995); 5,574,656 (1996); 5,684,711 (1997); and 5,901,069 (1999).
    • D.K. Agrafiotis, R.F. Bone, F.R. Salemme, R.M. Soll, United States Patents 5,463,564 (1995); 5,574,656 (1996); 5,684,711 (1997); and 5,901,069 (1999).
    • Agrafiotis, D.K.1    Bone, R.F.2    Salemme, F.R.3    Soll, R.M.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.