-
1
-
-
84938638635
-
-
C. for Medicare, M. Services, Readmissions Reduction Program, August.
-
C. for Medicare, M. Services, Readmissions Reduction Program, August 2014. http://www.cms.gov/Medicare/Medicare-Fee-for-Service-Payment/AcuteInpatientPPS/Readmissions-Reduction-Program.html.
-
(2014)
-
-
-
2
-
-
84907057366
-
Transitional care interventions prevent hospital readmissions for adults with chronic illnesses
-
Verhaegh K.J., MacNeil-Vroomen J.L., Eslami S., Geerlings S.E., de Rooij S.E., Buurman B.M. Transitional care interventions prevent hospital readmissions for adults with chronic illnesses. Health Aff. (Millwood) 2014, 33:1531-1539.
-
(2014)
Health Aff. (Millwood)
, vol.33
, pp. 1531-1539
-
-
Verhaegh, K.J.1
MacNeil-Vroomen, J.L.2
Eslami, S.3
Geerlings, S.E.4
de Rooij, S.E.5
Buurman, B.M.6
-
3
-
-
84899785862
-
Report to Congress: Promoting Greater Efficiency in Medicare
-
M.P.A. Committee, Report to Congress: Promoting Greater Efficiency in Medicare, 2007.
-
(2007)
-
-
-
4
-
-
84894637209
-
A public-private partnership develops and externally validates a 30-day hospital readmission risk prediction model
-
Choudhry S.A., Li J., David D., Erdmann C., Sikka R., Sutariya B. A public-private partnership develops and externally validates a 30-day hospital readmission risk prediction model. Online J. Public Health Inf. 2013, 5.
-
(2013)
Online J. Public Health Inf.
, vol.5
-
-
Choudhry, S.A.1
Li, J.2
David, D.3
Erdmann, C.4
Sikka, R.5
Sutariya, B.6
-
5
-
-
84894080916
-
Mining high-dimensional administrative claims data to predict early hospital readmissions
-
He D., Matthews S.C., Kalloo A.N., Hutfless S. Mining high-dimensional administrative claims data to predict early hospital readmissions. J. Am. Med. Inf. Assoc. 2014, 21:272-279.
-
(2014)
J. Am. Med. Inf. Assoc.
, vol.21
, pp. 272-279
-
-
He, D.1
Matthews, S.C.2
Kalloo, A.N.3
Hutfless, S.4
-
6
-
-
80054764509
-
Risk prediction models for hospital readmission: a systematic review
-
Kansagara D., Englander H., Salanitro A., Kagen D., Theobald C., Freeman M., Kripalani S. Risk prediction models for hospital readmission: a systematic review. J. Am. Med. Assoc. 2011, 306:1688-1698.
-
(2011)
J. Am. Med. Assoc.
, vol.306
, pp. 1688-1698
-
-
Kansagara, D.1
Englander, H.2
Salanitro, A.3
Kagen, D.4
Theobald, C.5
Freeman, M.6
Kripalani, S.7
-
7
-
-
84893440183
-
Predicting readmission risk with institution specific prediction models
-
Proceedings of the 2013 IEEE International Conference on Healthcare Informatics, ICHI
-
S. Yu, A. v. Esbroeck, F. Farooq, G. Fung, V. Anand, B. Krishnapuram, Predicting readmission risk with institution specific prediction models, in: Proceedings of the 2013 IEEE International Conference on Healthcare Informatics, ICHI '13, 2013, pp. 415-420.
-
(2013)
, vol.13
, pp. 415-420
-
-
Yu, S.1
Esbroeck, A.V.2
Farooq, F.3
Fung, G.4
Anand, V.5
Krishnapuram, B.6
-
8
-
-
84942484786
-
Ridge regression: biased estimation for nonorthogonal problems
-
Hoerl A.E., Kennard R.W. Ridge regression: biased estimation for nonorthogonal problems. Technometrics 1970, 12:55-67.
-
(1970)
Technometrics
, vol.12
, pp. 55-67
-
-
Hoerl, A.E.1
Kennard, R.W.2
-
9
-
-
85194972808
-
Regression shrinkage and selection via the lasso
-
Tibshirani R. Regression shrinkage and selection via the lasso. J. R. Stat. Soc., Ser. B 1994, 58:267-288.
-
(1994)
J. R. Stat. Soc., Ser. B
, vol.58
, pp. 267-288
-
-
Tibshirani, R.1
-
10
-
-
16244401458
-
Regularization and variable selection via the elastic net
-
Zou H., Hastie T. Regularization and variable selection via the elastic net. J. R. Stat. Soc., Ser. B 2005, 67:301-320.
-
(2005)
J. R. Stat. Soc., Ser. B
, vol.67
, pp. 301-320
-
-
Zou, H.1
Hastie, T.2
-
11
-
-
0035478854
-
Random forests
-
Breiman L. Random forests. Mach. Learn. 2001, 45(1):5-32.
-
(2001)
Mach. Learn.
, vol.45
, Issue.1
, pp. 5-32
-
-
Breiman, L.1
-
12
-
-
0030211964
-
Bagging predictors
-
Breiman L. Bagging predictors. Mach. Learn. 1996, 123-140.
-
(1996)
Mach. Learn.
, pp. 123-140
-
-
Breiman, L.1
-
16
-
-
0000016172
-
A stochastic approximation method
-
Robbins H., Monro S. A stochastic approximation method. Ann. Math. Stat. 1951, 22(3):400-407.
-
(1951)
Ann. Math. Stat.
, vol.22
, Issue.3
, pp. 400-407
-
-
Robbins, H.1
Monro, S.2
-
17
-
-
4644257995
-
Statistical behavior and consistency of classification methods based on convex risk minimization
-
Zhang T. Statistical behavior and consistency of classification methods based on convex risk minimization. Ann. Stat. 2003, 32:56-134.
-
(2003)
Ann. Stat.
, vol.32
, pp. 56-134
-
-
Zhang, T.1
-
18
-
-
80555140075
-
Scikit-learn: machine learning in Python
-
Pedregosa F., Varoquaux G., Gramfort A., Michel V., Thirion B., Grisel O., Blondel M., Prettenhofer P., Weiss R., Dubourg V., Vanderplas J., Passos A., Cournapeau D., Brucher M., Perrot M., Duchesnay E. Scikit-learn: machine learning in Python. J. Mach. Learn. Res. 2011, 12:2825-2830.
-
(2011)
J. Mach. Learn. Res.
, vol.12
, pp. 2825-2830
-
-
Pedregosa, F.1
Varoquaux, G.2
Gramfort, A.3
Michel, V.4
Thirion, B.5
Grisel, O.6
Blondel, M.7
Prettenhofer, P.8
Weiss, R.9
Dubourg, V.10
Vanderplas, J.11
Passos, A.12
Cournapeau, D.13
Brucher, M.14
Perrot, M.15
Duchesnay, E.16
-
19
-
-
69349090197
-
Learning deep architectures for ai
-
Bengio Y. Learning deep architectures for ai. Found. Trends Mach. Learn. 2009, 2(1):1-127.
-
(2009)
Found. Trends Mach. Learn.
, vol.2
, Issue.1
, pp. 1-127
-
-
Bengio, Y.1
-
20
-
-
33745805403
-
A fast learning algorithm for deep belief nets
-
Hinton G.E., Osindero S., Teh Y.-W. A fast learning algorithm for deep belief nets. Neural Comput. 2006, 18(7):1527-1554.
-
(2006)
Neural Comput.
, vol.18
, Issue.7
, pp. 1527-1554
-
-
Hinton, G.E.1
Osindero, S.2
Teh, Y.-W.3
-
21
-
-
0013344078
-
Training products of experts by minimizing contrastive divergence
-
Hinton G. Training products of experts by minimizing contrastive divergence. Neural Comput. 2002, 14:1771-1800.
-
(2002)
Neural Comput.
, vol.14
, pp. 1771-1800
-
-
Hinton, G.1
-
22
-
-
84872506495
-
A practical guide to training restricted boltzmann machines
-
Springer, G. Montavon, G.B. Orr, K.-R. Mller (Eds.) Neural Networks: Tricks of the Trade
-
Hinton G.E. A practical guide to training restricted boltzmann machines. Lecture Notes in Computer Science 2012, vol. 7700:599-619. Springer. second ed. G. Montavon, G.B. Orr, K.-R. Mller (Eds.).
-
(2012)
Lecture Notes in Computer Science
, vol.7700
, pp. 599-619
-
-
Hinton, G.E.1
-
23
-
-
84867720412
-
Improving Neural Networks by Preventing Co-Adaptation of Feature Detectors
-
CoRR.
-
G.E. Hinton, N. Srivastava, A. Krizhevsky, I. Sutskever, R. Salakhutdinov, Improving Neural Networks by Preventing Co-Adaptation of Feature Detectors, CoRR, 2012. http://arxiv.org/abs/1207.0580.
-
(2012)
-
-
Hinton, G.E.1
Srivastava, N.2
Krizhevsky, A.3
Sutskever, I.4
Salakhutdinov, R.5
-
24
-
-
59449087310
-
Exploring strategies for training deep neural networks
-
Larochelle H., Bengio Y., Louradour J., Lamblin P. Exploring strategies for training deep neural networks. J. Mach. Learn. Res. 2009, 10:1-40.
-
(2009)
J. Mach. Learn. Res.
, vol.10
, pp. 1-40
-
-
Larochelle, H.1
Bengio, Y.2
Louradour, J.3
Lamblin, P.4
-
26
-
-
84893584920
-
Prediction as a Candidate for Learning Deep Hierarchical Models of Data
-
R.B. Palm, Prediction as a Candidate for Learning Deep Hierarchical Models of Data, Master's Thesis, 2012.
-
(2012)
Master's Thesis
-
-
Palm, R.B.1
|