메뉴 건너뛰기




Volumn 56, Issue , 2015, Pages 229-238

A comparison of models for predicting early hospital readmissions

Author keywords

Deep learning; Early readmission; Electronic health records; Penalized methods; Predictive models; Random forest

Indexed keywords

COST EFFECTIVENESS; DECISION TREES; DEEP LEARNING; HEALTH INSURANCE; HOSPITALS; LEARNING SYSTEMS; RANDOM FORESTS; REGRESSION ANALYSIS; RISK ASSESSMENT; RISK MANAGEMENT;

EID: 84938596257     PISSN: 15320464     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.jbi.2015.05.016     Document Type: Article
Times cited : (240)

References (26)
  • 1
    • 84938638635 scopus 로고    scopus 로고
    • C. for Medicare, M. Services, Readmissions Reduction Program, August.
    • C. for Medicare, M. Services, Readmissions Reduction Program, August 2014. http://www.cms.gov/Medicare/Medicare-Fee-for-Service-Payment/AcuteInpatientPPS/Readmissions-Reduction-Program.html.
    • (2014)
  • 3
    • 84899785862 scopus 로고    scopus 로고
    • Report to Congress: Promoting Greater Efficiency in Medicare
    • M.P.A. Committee, Report to Congress: Promoting Greater Efficiency in Medicare, 2007.
    • (2007)
  • 4
    • 84894637209 scopus 로고    scopus 로고
    • A public-private partnership develops and externally validates a 30-day hospital readmission risk prediction model
    • Choudhry S.A., Li J., David D., Erdmann C., Sikka R., Sutariya B. A public-private partnership develops and externally validates a 30-day hospital readmission risk prediction model. Online J. Public Health Inf. 2013, 5.
    • (2013) Online J. Public Health Inf. , vol.5
    • Choudhry, S.A.1    Li, J.2    David, D.3    Erdmann, C.4    Sikka, R.5    Sutariya, B.6
  • 5
    • 84894080916 scopus 로고    scopus 로고
    • Mining high-dimensional administrative claims data to predict early hospital readmissions
    • He D., Matthews S.C., Kalloo A.N., Hutfless S. Mining high-dimensional administrative claims data to predict early hospital readmissions. J. Am. Med. Inf. Assoc. 2014, 21:272-279.
    • (2014) J. Am. Med. Inf. Assoc. , vol.21 , pp. 272-279
    • He, D.1    Matthews, S.C.2    Kalloo, A.N.3    Hutfless, S.4
  • 7
    • 84893440183 scopus 로고    scopus 로고
    • Predicting readmission risk with institution specific prediction models
    • Proceedings of the 2013 IEEE International Conference on Healthcare Informatics, ICHI
    • S. Yu, A. v. Esbroeck, F. Farooq, G. Fung, V. Anand, B. Krishnapuram, Predicting readmission risk with institution specific prediction models, in: Proceedings of the 2013 IEEE International Conference on Healthcare Informatics, ICHI '13, 2013, pp. 415-420.
    • (2013) , vol.13 , pp. 415-420
    • Yu, S.1    Esbroeck, A.V.2    Farooq, F.3    Fung, G.4    Anand, V.5    Krishnapuram, B.6
  • 8
    • 84942484786 scopus 로고
    • Ridge regression: biased estimation for nonorthogonal problems
    • Hoerl A.E., Kennard R.W. Ridge regression: biased estimation for nonorthogonal problems. Technometrics 1970, 12:55-67.
    • (1970) Technometrics , vol.12 , pp. 55-67
    • Hoerl, A.E.1    Kennard, R.W.2
  • 9
    • 85194972808 scopus 로고
    • Regression shrinkage and selection via the lasso
    • Tibshirani R. Regression shrinkage and selection via the lasso. J. R. Stat. Soc., Ser. B 1994, 58:267-288.
    • (1994) J. R. Stat. Soc., Ser. B , vol.58 , pp. 267-288
    • Tibshirani, R.1
  • 10
    • 16244401458 scopus 로고    scopus 로고
    • Regularization and variable selection via the elastic net
    • Zou H., Hastie T. Regularization and variable selection via the elastic net. J. R. Stat. Soc., Ser. B 2005, 67:301-320.
    • (2005) J. R. Stat. Soc., Ser. B , vol.67 , pp. 301-320
    • Zou, H.1    Hastie, T.2
  • 11
    • 0035478854 scopus 로고    scopus 로고
    • Random forests
    • Breiman L. Random forests. Mach. Learn. 2001, 45(1):5-32.
    • (2001) Mach. Learn. , vol.45 , Issue.1 , pp. 5-32
    • Breiman, L.1
  • 12
    • 0030211964 scopus 로고    scopus 로고
    • Bagging predictors
    • Breiman L. Bagging predictors. Mach. Learn. 1996, 123-140.
    • (1996) Mach. Learn. , pp. 123-140
    • Breiman, L.1
  • 13
  • 16
    • 0000016172 scopus 로고
    • A stochastic approximation method
    • Robbins H., Monro S. A stochastic approximation method. Ann. Math. Stat. 1951, 22(3):400-407.
    • (1951) Ann. Math. Stat. , vol.22 , Issue.3 , pp. 400-407
    • Robbins, H.1    Monro, S.2
  • 17
    • 4644257995 scopus 로고    scopus 로고
    • Statistical behavior and consistency of classification methods based on convex risk minimization
    • Zhang T. Statistical behavior and consistency of classification methods based on convex risk minimization. Ann. Stat. 2003, 32:56-134.
    • (2003) Ann. Stat. , vol.32 , pp. 56-134
    • Zhang, T.1
  • 19
    • 69349090197 scopus 로고    scopus 로고
    • Learning deep architectures for ai
    • Bengio Y. Learning deep architectures for ai. Found. Trends Mach. Learn. 2009, 2(1):1-127.
    • (2009) Found. Trends Mach. Learn. , vol.2 , Issue.1 , pp. 1-127
    • Bengio, Y.1
  • 20
    • 33745805403 scopus 로고    scopus 로고
    • A fast learning algorithm for deep belief nets
    • Hinton G.E., Osindero S., Teh Y.-W. A fast learning algorithm for deep belief nets. Neural Comput. 2006, 18(7):1527-1554.
    • (2006) Neural Comput. , vol.18 , Issue.7 , pp. 1527-1554
    • Hinton, G.E.1    Osindero, S.2    Teh, Y.-W.3
  • 21
    • 0013344078 scopus 로고    scopus 로고
    • Training products of experts by minimizing contrastive divergence
    • Hinton G. Training products of experts by minimizing contrastive divergence. Neural Comput. 2002, 14:1771-1800.
    • (2002) Neural Comput. , vol.14 , pp. 1771-1800
    • Hinton, G.1
  • 22
    • 84872506495 scopus 로고    scopus 로고
    • A practical guide to training restricted boltzmann machines
    • Springer, G. Montavon, G.B. Orr, K.-R. Mller (Eds.) Neural Networks: Tricks of the Trade
    • Hinton G.E. A practical guide to training restricted boltzmann machines. Lecture Notes in Computer Science 2012, vol. 7700:599-619. Springer. second ed. G. Montavon, G.B. Orr, K.-R. Mller (Eds.).
    • (2012) Lecture Notes in Computer Science , vol.7700 , pp. 599-619
    • Hinton, G.E.1
  • 23
    • 84867720412 scopus 로고    scopus 로고
    • Improving Neural Networks by Preventing Co-Adaptation of Feature Detectors
    • CoRR.
    • G.E. Hinton, N. Srivastava, A. Krizhevsky, I. Sutskever, R. Salakhutdinov, Improving Neural Networks by Preventing Co-Adaptation of Feature Detectors, CoRR, 2012. http://arxiv.org/abs/1207.0580.
    • (2012)
    • Hinton, G.E.1    Srivastava, N.2    Krizhevsky, A.3    Sutskever, I.4    Salakhutdinov, R.5
  • 26
    • 84893584920 scopus 로고    scopus 로고
    • Prediction as a Candidate for Learning Deep Hierarchical Models of Data
    • R.B. Palm, Prediction as a Candidate for Learning Deep Hierarchical Models of Data, Master's Thesis, 2012.
    • (2012) Master's Thesis
    • Palm, R.B.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.