메뉴 건너뛰기




Volumn 21, Issue 2, 2014, Pages 231-237

Diagnosis code assignment: Models and evaluation metrics

Author keywords

[No Author keywords available]

Indexed keywords

CLINICAL CODING; ELECTRONIC HEALTH RECORDS; ICD CODES; MACHINE LEARNING; MEDICAL INFORMATICS;

EID: 84894070857     PISSN: 10675027     EISSN: 1527974X     Source Type: Journal    
DOI: 10.1136/amiajnl-2013-002159     Document Type: Article
Times cited : (230)

References (31)
  • 1
    • 84874921976 scopus 로고    scopus 로고
    • Improving the electronic health record-are clinicians getting what they wished for?
    • Cimino JJ. Improving the electronic health record-are clinicians getting what they wished for? JAMA 2013;309:991-2.
    • (2013) JAMA , vol.309 , pp. 991-2
    • Cimino, J.J.1
  • 2
    • 84894070352 scopus 로고    scopus 로고
    • EHR adoption & meaningful use progress is assessed in new data briefs (accessed 19 May 2013).
    • KingJ,PatelV,FurukawaM,et al. EHR adoption & meaningful use progress is assessed in new data briefs. 2012. http://www.healthit.gov/buzz-blog/meaningful-use/ ehr-adoption-meaningful-use-progress-assessed-data-briefs/ (accessed 19 May 2013).
    • (2012)
    • King, J.1    Patel, V.2    Furukawa, M.3
  • 3
    • 35148849323 scopus 로고    scopus 로고
    • Value of ICD-9-coded chief complaints for detection of epidemics
    • Tsui F-C, Wagner MM, Dato V, et al. Value of ICD-9-coded chief complaints for detection of epidemics. J Am Med Inform Assoc 2002;9:S41-7.
    • (2002) J Am Med Inform Assoc , vol.9
    • Tsui, F.-C.1    Wagner, M.M.2    Dato, V.3
  • 4
    • 34547488336 scopus 로고    scopus 로고
    • Probing genetic overlap among complex human phenotypes
    • Rzhetsky A, Wajngurt D, Park N, et al. Probing genetic overlap among complex human phenotypes. Proc Natl Acad Sci USA 2007;104:11694-9.
    • (2007) Proc Natl Acad Sci USA , vol.104 , pp. 11694-9
    • Rzhetsky, A.1    Wajngurt, D.2    Park, N.3
  • 5
    • 77952822074 scopus 로고    scopus 로고
    • PheWAS: demonstrating the feasibility of a phenome-wide scan to discover gene-disease associations
    • Denny JC, Ritchie MD, Basford MA, et al. PheWAS: demonstrating the feasibility of a phenome-wide scan to discover gene-disease associations. Bioinforma Oxf Engl 2010;26:1205-10.
    • (2010) Bioinforma Oxf Engl , vol.26 , pp. 1205-10
    • Denny, J.C.1    Ritchie, M.D.2    Basford, M.A.3
  • 6
    • 77950338000 scopus 로고    scopus 로고
    • Robust replication of genotype-phenotype associations across multiple diseases in an electronic medical record
    • Ritchie MD, Denny JC, Crawford DC, et al. Robust replication of genotype-phenotype associations across multiple diseases in an electronic medical record. Am J Hum Genet 2010;86:560-72.
    • (2010) Am J Hum Genet , vol.86 , pp. 560-72
    • Ritchie, M.D.1    Denny, J.C.2    Crawford, D.C.3
  • 8
    • 84894035630 scopus 로고    scopus 로고
    • CDC. ICD-9-CM Official Guidelines for Coding and Reporting (accessed 29 Apr 2013).
    • CDC. ICD-9-CM Official Guidelines for Coding and Reporting. 2011. http://www. cdc.gov/nchs/data/icd9/icd9cm_guidelines_2011.pdf (accessed 29 Apr 2013).
    • (2011)
  • 10
    • 18844409393 scopus 로고    scopus 로고
    • Accuracy of ICD-9-CM codes for identifying cardiovascular and stroke risk factors
    • Birman-Deych E, Waterman AD, Yan Y, et al. Accuracy of ICD-9-CM codes for identifying cardiovascular and stroke risk factors. Med Care 2005;43:480-5.
    • (2005) Med Care , vol.43 , pp. 480-5
    • Birman-Deych, E.1    Waterman, A.D.2    Yan, Y.3
  • 11
    • 0023847702 scopus 로고
    • Accuracy of diagnostic coding for Medicare patients under the prospective-payment system
    • Hsia DC, Krushat WM, Fagan AB, et al. Accuracy of diagnostic coding for Medicare patients under the prospective-payment system. N Engl J Med 1988;318:352-5.
    • (1988) N Engl J Med , vol.318 , pp. 352-5
    • Hsia, D.C.1    Krushat, W.M.2    Fagan, A.B.3
  • 12
    • 73449141409 scopus 로고    scopus 로고
    • Effective factors on accuracy of principal diagnosis coding based on International Classification of Diseases, the 10th revision (ICD-10)
    • Farzandipour M, Sheikhtaheri A, Sadoughi F. Effective factors on accuracy of principal diagnosis coding based on International Classification of Diseases, the 10th revision (ICD-10). Int J Inf Manag 2010;30:78-84.
    • (2010) Int J Inf Manag , vol.30 , pp. 78-84
    • Farzandipour, M.1    Sheikhtaheri, A.2    Sadoughi, F.3
  • 13
    • 84885147865 scopus 로고    scopus 로고
    • Temporal properties of diagnosis code time series in aggregate
    • Perotte A, Hripcsak G. Temporal properties of diagnosis code time series in aggregate. IEEE J Biomed Heal Informatics 2013;17:477-83.
    • (2013) IEEE J Biomed Heal Informatics , vol.17 , pp. 477-83
    • Perotte, A.1    Hripcsak, G.2
  • 15
    • 46949090420 scopus 로고    scopus 로고
    • Three approaches to automatic assignment of ICD-9-CM codes to radiology reports
    • Goldstein I, Arzumtsyan A, Uzuner O. Three approaches to automatic assignment of ICD-9-CM codes to radiology reports. AMIA Annu Symp Proc 2007; 2007:279-83.
    • (2007) AMIA Annu Symp Proc , vol.2007 , pp. 279-83
    • Goldstein, I.1    Arzumtsyan, A.2    Uzuner, O.3
  • 16
    • 44649122876 scopus 로고    scopus 로고
    • Automatic construction of rule-based ICD-9-CM coding systems
    • Farkas R, Szarvas G. Automatic construction of rule-based ICD-9-CM coding systems. BMC Bioinformatics 2008;9:S10.
    • (2008) BMC Bioinformatics , vol.9
    • Farkas, R.1    Szarvas, G.2
  • 18
    • 0004700338 scopus 로고
    • Automatic assignment of ICD9 codes to discharge summaries
    • University of Massachusetts
    • Larkey L, Croft B. Automatic assignment of ICD9 codes to discharge summaries. University of Massachusetts, 1995.
    • (1995)
    • Larkey, L.1    Croft, B.2
  • 20
    • 84894097635 scopus 로고    scopus 로고
    • Machine learning and features selection for semi-automatic ICD-9-CM encoding
    • Stroudsburg, PA, USA: Association for Computational Linguistics (accessed 2 Sep 2013).
    • Medori J, Fairon C. Machine learning and features selection for semi-automatic ICD-9-CM encoding. In: Proceedings of the NAACL HLT 2010 Second Louhi Workshop on Text and Data Mining of Health Documents. Stroudsburg, PA, USA: Association for Computational Linguistics, 2010:84-9. http://dl.acm.org/citation. cfm?id=1867735.1867748 (accessed 2 Sep 2013).
    • (2010) Proceedings of the NAACL HLT 2010 Second Louhi Workshop on Text and Data Mining of Health Documents. , pp. 84-9
    • Medori, J.1    Fairon, C.2
  • 21
    • 33747880992 scopus 로고    scopus 로고
    • Automating the assignment of diagnosis codes to patient encounters using example-based and machine learning techniques
    • Pakhomov SVS, Buntrock JD, Chute CG, et al. Automating the assignment of diagnosis codes to patient encounters using example-based and machine learning techniques. J Am Med Informatics Assoc JAMIA 2006;13:516-25.
    • (2006) J Am Med Informatics Assoc JAMIA , vol.13 , pp. 516-25
    • Pakhomov, S.V.S.1    Buntrock, J.D.2    Chute, C.G.3
  • 22
    • 84949141481 scopus 로고    scopus 로고
    • Large scale diagnostic code classification for medical patient records
    • Proceedings of the 3rd International Joint Conference on Natural Language Processing (IJCNLP'08)
    • Lita L, Yu S, Niculescu S, et al. Large scale diagnostic code classification for medical patient records. In: Proceedings of the 3rd International Joint Conference on Natural Language Processing (IJCNLP'08). 2008.
    • (2008)
    • Lita, L.1    Yu, S.2    Niculescu, S.3
  • 23
    • 84875618622 scopus 로고    scopus 로고
    • A Hierarchical Approach to Encoding Medical Concepts for Clinical Notes
    • Columbus, Ohio: Association for Computational Linguistics
    • Zhang Y. A Hierarchical Approach to Encoding Medical Concepts for Clinical Notes. In: Proceedings of the ACL-08: HLT Student Research Workshop. Columbus, Ohio: Association for Computational Linguistics, 2008:67-72.
    • (2008) Proceedings of the ACL-08: HLT Student Research Workshop , pp. 67-72
    • Zhang, Y.1
  • 24
    • 84957069814 scopus 로고    scopus 로고
    • Text Categorization with Suport Vector Machines: Learning with Many Relevant Features
    • London, UK: Springer-Verlag (accessed 2 Sep 2013).
    • Joachims T. Text Categorization with Suport Vector Machines: Learning with Many Relevant Features. In: Proceedings of the 10th European Conference on Machine Learning. London, UK: Springer-Verlag, 1998:137-42. http://dl.acm.org/citation. cfm?id=645326.649721 (accessed 2 Sep 2013).
    • (1998) Proceedings of the 10th European Conference on Machine Learning , pp. 137-42
    • Joachims, T.1
  • 25
    • 78650497348 scopus 로고    scopus 로고
    • A systematic literature review of automated clinical coding and classification systems
    • Stanfill MH, Williams M, Fenton SH, et al. A systematic literature review of automated clinical coding and classification systems. J Am Med Informatics Assoc JAMIA 2010;17:646-51.
    • (2010) J Am Med Informatics Assoc JAMIA , vol.17 , pp. 646-51
    • Stanfill, M.H.1    Williams, M.2    Fenton, S.H.3
  • 27
    • 84894090576 scopus 로고    scopus 로고
    • The computational medicine center's 2007 medical natural language processing challenge
    • The computational medicine center's 2007 medical natural language processing challenge. 2007. http://www.computationalmedicine.org/challenge/previous
    • (2007)
  • 28
    • 79955479858 scopus 로고    scopus 로고
    • Multiparameter Intelligent Monitoring in Intensive Care II (MIMIC-II): a public-access intensive care unit database
    • Saeed M, Villarroel M, Reisner AT, et al. Multiparameter Intelligent Monitoring in Intensive Care II (MIMIC-II): a public-access intensive care unit database. Crit Care Med 2011;39:952-60.
    • (2011) Crit Care Med , vol.39 , pp. 952-60
    • Saeed, M.1    Villarroel, M.2    Reisner, A.T.3
  • 29
    • 79959988943 scopus 로고    scopus 로고
    • BioPortal: enhanced functionality via new web services from the National Center for Biomedical Ontology to access and use ontologies in software applications
    • Whetzel PL, Noy NF, Shah NH, et al. BioPortal: enhanced functionality via new web services from the National Center for Biomedical Ontology to access and use ontologies in software applications. Nucleic Acids Res 2011;39:W541-5.
    • (2011) Nucleic Acids Res , vol.39
    • Whetzel, P.L.1    Noy, N.F.2    Shah, N.H.3
  • 30
    • 0021426157 scopus 로고
    • Fast algorithms for finding nearest common ancestors
    • Harel D, Tarjan RE. Fast algorithms for finding nearest common ancestors. SIAM J Comput 1984;13:338-55.
    • (1984) SIAM J Comput , vol.13 , pp. 338-55
    • Harel, D.1    Tarjan, R.E.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.