-
1
-
-
84942372343
-
Sugar-sweetened beverage, diet soda, and fatty liver disease in the Framingham Heart Study cohorts
-
Ma J, et al. Sugar-sweetened beverage, diet soda, and fatty liver disease in the Framingham Heart Study cohorts. J Hepatol. 2015;63(2):462–469.
-
(2015)
J Hepatol
, vol.63
, Issue.2
, pp. 462-469
-
-
Ma, J1
-
2
-
-
84899988517
-
Sugar-sweetened beverages and prevalence of the metabolically abnormal phenotype in the Framingham Heart Study
-
Green AK, Jacques PF, Rogers G, Fox CS, Meigs JB, McKeown NM. Sugar-sweetened beverages and prevalence of the metabolically abnormal phenotype in the Framingham Heart Study. Obesity (Silver Spring). 2014;22(5):E157–E163.
-
(2014)
Obesity (Silver Spring)
, vol.22
, Issue.5
, pp. E157-E163
-
-
Green, AK1
Jacques, PF2
Rogers, G3
Fox, CS4
Meigs, JB5
McKeown, NM.6
-
3
-
-
85006991095
-
Sugar-sweetened beverage but not diet soda consumption is positively associated with progression of insulin resistance and prediabetes
-
Ma J, et al. Sugar-sweetened beverage but not diet soda consumption is positively associated with progression of insulin resistance and prediabetes. J Nutr. 2016;146(12):2544–2550.
-
(2016)
J Nutr
, vol.146
, Issue.12
, pp. 2544-2550
-
-
Ma, J1
-
4
-
-
78650920491
-
Sugar-sweetened beverages and risk of metabolic syndrome and type 2 diabetes: a meta-analysis
-
Malik VS, Popkin BM, Bray GA, Després JP, Willett WC, Hu FB. Sugar-sweetened beverages and risk of metabolic syndrome and type 2 diabetes: a meta-analysis. Diabetes Care. 2010;33(11):2477–2483.
-
(2010)
Diabetes Care
, vol.33
, Issue.11
, pp. 2477-2483
-
-
Malik, VS1
Popkin, BM2
Bray, GA3
Després, JP4
Willett, WC5
Hu, FB.6
-
5
-
-
84949257250
-
Metabolic syndrome update
-
Grundy SM. Metabolic syndrome update. Trends Cardiovasc Med. 2016;26(4):364–373.
-
(2016)
Trends Cardiovasc Med
, vol.26
, Issue.4
, pp. 364-373
-
-
Grundy, SM.1
-
6
-
-
0024160877
-
Banting lecture 1988. Role of insulin resistance in human disease
-
Reaven GM. Banting lecture 1988. Role of insulin resistance in human disease. Diabetes. 1988;37(12):1595–1607.
-
(1988)
Diabetes
, vol.37
, Issue.12
, pp. 1595-1607
-
-
Reaven, GM.1
-
7
-
-
66449093225
-
Consuming fructose-sweetened, not glucose-sweetened, beverages increases visceral adiposity and lipids and decreases insulin sensitivity in overweight/obese humans
-
Stanhope KL, et al. Consuming fructose-sweetened, not glucose-sweetened, beverages increases visceral adiposity and lipids and decreases insulin sensitivity in overweight/obese humans. J Clin Invest. 2009;119(5):1322–1334.
-
(2009)
J Clin Invest
, vol.119
, Issue.5
, pp. 1322-1334
-
-
Stanhope, KL1
-
8
-
-
2442435802
-
Deficiency of carbohydrate response element-binding protein (ChREBP) reduces lipogenesis as well as glycolysis
-
Iizuka K, Bruick RK, Liang G, Horton JD, Uyeda K. Deficiency of carbohydrate response element-binding protein (ChREBP) reduces lipogenesis as well as glycolysis. Proc Natl Acad Sci USA. 2004;101(19):7281–7286.
-
(2004)
Proc Natl Acad Sci USA
, vol.101
, Issue.19
, pp. 7281-7286
-
-
Iizuka, K1
Bruick, RK2
Liang, G3
Horton, JD4
Uyeda, K.5
-
9
-
-
85030458993
-
Sweet sixteenth for ChREBP: established roles and future goals
-
Abdul-Wahed A, Guilmeau S, Postic C. Sweet sixteenth for ChREBP: established roles and future goals. Cell Metab. 2017;26(2):324–341.
-
(2017)
Cell Metab
, vol.26
, Issue.2
, pp. 324-341
-
-
Abdul-Wahed, A1
Guilmeau, S2
Postic, C.3
-
10
-
-
84871709488
-
The role of the carbohydrate response element-binding protein in male fructose-fed rats
-
Erion DM, et al. The role of the carbohydrate response element-binding protein in male fructose-fed rats. Endocrinology. 2013;154(1):36–44.
-
(2013)
Endocrinology
, vol.154
, Issue.1
, pp. 36-44
-
-
Erion, DM1
-
11
-
-
84994666911
-
ChREBP regulates fructose-induced glucose production independently of insulin signaling
-
Kim MS, et al. ChREBP regulates fructose-induced glucose production independently of insulin signaling. J Clin Invest. 2016;126(11):4372–4386.
-
(2016)
J Clin Invest
, vol.126
, Issue.11
, pp. 4372-4386
-
-
Kim, MS1
-
12
-
-
42749092583
-
Dietary fructose induces a wide range of genes with distinct shift in carbohydrate and lipid metabolism in fed and fasted rat liver
-
Koo HY, Wallig MA, Chung BH, Nara TY, Cho BH, Nakamura MT. Dietary fructose induces a wide range of genes with distinct shift in carbohydrate and lipid metabolism in fed and fasted rat liver. Biochim Biophys Acta. 2008;1782(5):341–348.
-
(2008)
Biochim Biophys Acta
, vol.1782
, Issue.5
, pp. 341-348
-
-
Koo, HY1
Wallig, MA2
Chung, BH3
Nara, TY4
Cho, BH5
Nakamura, MT.6
-
13
-
-
84920722614
-
Fructose ingestion acutely stimulates circulating FGF21 levels in humans
-
Dushay JR, Toschi E, Mitten EK, Fisher FM, Herman MA, Maratos-Flier E. Fructose ingestion acutely stimulates circulating FGF21 levels in humans. Mol Metab. 2015;4(1):51–57.
-
(2015)
Mol Metab
, vol.4
, Issue.1
, pp. 51-57
-
-
Dushay, JR1
Toschi, E2
Mitten, EK3
Fisher, FM4
Herman, MA5
Maratos-Flier, E.6
-
14
-
-
85007579292
-
A critical role for ChREBP-mediated FGF21 secretion in hepatic fructose metabolism
-
Fisher FM, et al. A critical role for ChREBP-mediated FGF21 secretion in hepatic fructose metabolism. Mol Metab. 2017;6(1):14–21.
-
(2017)
Mol Metab
, vol.6
, Issue.1
, pp. 14-21
-
-
Fisher, FM1
-
15
-
-
84957949211
-
FGF21 regulates sweet and alcohol preference
-
Talukdar S, et al. FGF21 regulates sweet and alcohol preference. Cell Metab. 2016;23(2):344–349.
-
(2016)
Cell Metab
, vol.23
, Issue.2
, pp. 344-349
-
-
Talukdar, S1
-
16
-
-
84957975315
-
FGF21 mediates endocrine control of simple sugar intake and sweet taste preference by the liver
-
von Holstein-Rathlou S, et al. FGF21 mediates endocrine control of simple sugar intake and sweet taste preference by the liver. Cell Metab. 2016;23(2):335–343.
-
(2016)
Cell Metab
, vol.23
, Issue.2
, pp. 335-343
-
-
von Holstein-Rathlou, S1
-
17
-
-
85030842981
-
A specific ChREBP and PPARα cross-talk is required for the glucose-mediated FGF21 response
-
Iroz A, et al. A specific ChREBP and PPARα cross-talk is required for the glucose-mediated FGF21 response. Cell Rep. 2017;21(2):403–416.
-
(2017)
Cell Rep
, vol.21
, Issue.2
, pp. 403-416
-
-
Iroz, A1
-
18
-
-
85021736691
-
Lipogenic transcription factor ChREBP mediates fructose-induced metabolic adaptations to prevent hepatotoxicity
-
Zhang D, et al. Lipogenic transcription factor ChREBP mediates fructose-induced metabolic adaptations to prevent hepatotoxicity. J Clin Invest. 2017;127(7):2855–2867.
-
(2017)
J Clin Invest
, vol.127
, Issue.7
, pp. 2855-2867
-
-
Zhang, D1
-
19
-
-
0031945356
-
Hereditary fructose intolerance
-
Ali M, Rellos P, Cox TM. Hereditary fructose intolerance. J Med Genet. 1998;35(5):353–365.
-
(1998)
J Med Genet
, vol.35
, Issue.5
, pp. 353-365
-
-
Ali, M1
Rellos, P2
Cox, TM.3
-
20
-
-
34548094022
-
The spectrum of aldolase B (ALDOB) mutations and the prevalence of hereditary fructose intolerance in Central Europe
-
Santer R, et al. The spectrum of aldolase B (ALDOB) mutations and the prevalence of hereditary fructose intolerance in Central Europe. Hum Mutat. 2005;25(6):594.
-
(2005)
Hum Mutat
, vol.25
, Issue.6
, pp. 594
-
-
Santer, R1
-
21
-
-
84862023939
-
Hepatic insulin signaling is required for obesity-dependent expression of SREBP-1c mRNA but not for feeding-dependent expression
-
Haas JT, et al. Hepatic insulin signaling is required for obesity-dependent expression of SREBP-1c mRNA but not for feeding-dependent expression. Cell Metab. 2012;15(6):873–884.
-
(2012)
Cell Metab
, vol.15
, Issue.6
, pp. 873-884
-
-
Haas, JT1
-
22
-
-
42749092583
-
Dietary fructose induces a wide range of genes with distinct shift in carbohydrate and lipid metabolism in fed and fasted rat liver
-
Koo HY, Wallig MA, Chung BH, Nara TY, Cho BH, Nakamura MT. Dietary fructose induces a wide range of genes with distinct shift in carbohydrate and lipid metabolism in fed and fasted rat liver. Biochim Biophys Acta. 2008;1782(5):341–348.
-
(2008)
Biochim Biophys Acta
, vol.1782
, Issue.5
, pp. 341-348
-
-
Koo, HY1
Wallig, MA2
Chung, BH3
Nara, TY4
Cho, BH5
Nakamura, MT.6
-
23
-
-
18244382304
-
Sources of fatty acids stored in liver and secreted via lipoproteins in patients with nonalcoholic fatty liver disease
-
Donnelly KL, Smith CI, Schwarzenberg SJ, Jessurun J, Boldt MD, Parks EJ. Sources of fatty acids stored in liver and secreted via lipoproteins in patients with nonalcoholic fatty liver disease. J Clin Invest. 2005;115(5):1343–1351.
-
(2005)
J Clin Invest
, vol.115
, Issue.5
, pp. 1343-1351
-
-
Donnelly, KL1
Smith, CI2
Schwarzenberg, SJ3
Jessurun, J4
Boldt, MD5
Parks, EJ.6
-
24
-
-
64149110202
-
Slc2a5 (Glut5) is essential for the absorption of fructose in the intestine and generation of fructose-induced hypertension
-
Barone S, et al. Slc2a5 (Glut5) is essential for the absorption of fructose in the intestine and generation of fructose-induced hypertension. J Biol Chem. 2009;284(8):5056–5066.
-
(2009)
J Biol Chem
, vol.284
, Issue.8
, pp. 5056-5066
-
-
Barone, S1
-
25
-
-
65649151403
-
Sepsis induces extensive autophagic vacuolization in hepatocytes: a clinical and laboratory-based study
-
Watanabe E, et al. Sepsis induces extensive autophagic vacuolization in hepatocytes: a clinical and laboratory-based study. Lab Invest. 2009;89(5):549–561.
-
(2009)
Lab Invest
, vol.89
, Issue.5
, pp. 549-561
-
-
Watanabe, E1
-
26
-
-
0001513966
-
Obesity increases sensitivity to endotoxin liver injury: implications for the pathogenesis of steatohepatitis
-
Yang SQ, Lin HZ, Lane MD, Clemens M, Diehl AM. Obesity increases sensitivity to endotoxin liver injury: implications for the pathogenesis of steatohepatitis. Proc Natl Acad Sci USA. 1997;94(6):2557–2562.
-
(1997)
Proc Natl Acad Sci USA
, vol.94
, Issue.6
, pp. 2557-2562
-
-
Yang, SQ1
Lin, HZ2
Lane, MD3
Clemens, M4
Diehl, AM.5
-
27
-
-
0030961564
-
Dietary fructose enhances intestinal fructose transport and GLUT5 expression in weaning rats
-
(Pt 1)
-
Shu R, David ES, Ferraris RP. Dietary fructose enhances intestinal fructose transport and GLUT5 expression in weaning rats. Am J Physiol. 1997;272(3 Pt 1):G446–G453.
-
(1997)
Am J Physiol
, vol.272
, Issue.3
, pp. G446-G453
-
-
Shu, R1
David, ES2
Ferraris, RP.3
-
28
-
-
77952096918
-
The role of fructose in the pathogenesis of NAFLD and the metabolic syndrome
-
Lim JS, Mietus-Snyder M, Valente A, Schwarz JM, Lustig RH. The role of fructose in the pathogenesis of NAFLD and the metabolic syndrome. Nat Rev Gastroenterol Hepatol. 2010;7(5):251–264.
-
(2010)
Nat Rev Gastroenterol Hepatol
, vol.7
, Issue.5
, pp. 251-264
-
-
Lim, JS1
Mietus-Snyder, M2
Valente, A3
Schwarz, JM4
Lustig, RH.5
-
29
-
-
80055024880
-
Genome-wide association study identifies loci influencing concentrations of liver enzymes in plasma
-
Chambers JC, et al. Genome-wide association study identifies loci influencing concentrations of liver enzymes in plasma. Nat Genet. 2011;43(11):1131–1138.
-
(2011)
Nat Genet
, vol.43
, Issue.11
, pp. 1131-1138
-
-
Chambers, JC1
-
30
-
-
38649132270
-
Six new loci associated with blood low-density lipoprotein cholesterol, high-density lipoprotein cholesterol or triglycerides in humans
-
Kathiresan S, et al. Six new loci associated with blood low-density lipoprotein cholesterol, high-density lipoprotein cholesterol or triglycerides in humans. Nat Genet. 2008;40(2):189–197.
-
(2008)
Nat Genet
, vol.40
, Issue.2
, pp. 189-197
-
-
Kathiresan, S1
-
31
-
-
38649084407
-
Genome-wide scan identifies variation in MLXIPL associated with plasma triglycerides
-
Kooner JS, et al. Genome-wide scan identifies variation in MLXIPL associated with plasma triglycerides. Nat Genet. 2008;40(2):149–151.
-
(2008)
Nat Genet
, vol.40
, Issue.2
, pp. 149-151
-
-
Kooner, JS1
-
32
-
-
38649125868
-
Newly identified loci that influence lipid concentrations and risk of coronary artery disease
-
Willer CJ, et al. Newly identified loci that influence lipid concentrations and risk of coronary artery disease. Nat Genet. 2008;40(2):161–169.
-
(2008)
Nat Genet
, vol.40
, Issue.2
, pp. 161-169
-
-
Willer, CJ1
-
33
-
-
3142698736
-
Single nucleotide polymorphism (-468 Gly to A) at the promoter region of SREBP-1c associates with genetic defect of fructose-induced hepatic lipogenesis [corrected]
-
Nagata R, et al. Single nucleotide polymorphism (-468 Gly to A) at the promoter region of SREBP-1c associates with genetic defect of fructose-induced hepatic lipogenesis [corrected]. J Biol Chem. 2004;279(28):29031–29042.
-
(2004)
J Biol Chem
, vol.279
, Issue.28
, pp. 29031-29042
-
-
Nagata, R1
-
34
-
-
0027135157
-
Effect of endotoxin on cholesterol biosynthesis and distribution in serum lipoproteins in Syrian hamsters
-
Feingold KR, et al. Effect of endotoxin on cholesterol biosynthesis and distribution in serum lipoproteins in Syrian hamsters. J Lipid Res. 1993;34(12):2147–2158.
-
(1993)
J Lipid Res
, vol.34
, Issue.12
, pp. 2147-2158
-
-
Feingold, KR1
-
35
-
-
33749370739
-
Liver-specific inhibition of ChREBP improves hepatic steatosis and insulin resistance in ob/ob mice
-
Dentin R, et al. Liver-specific inhibition of ChREBP improves hepatic steatosis and insulin resistance in ob/ob mice. Diabetes. 2006;55(8):2159–2170.
-
(2006)
Diabetes
, vol.55
, Issue.8
, pp. 2159-2170
-
-
Dentin, R1
-
36
-
-
84861809881
-
The lipogenic transcription factor ChREBP dissociates hepatic steatosis from insulin resistance in mice and humans
-
Benhamed F, et al. The lipogenic transcription factor ChREBP dissociates hepatic steatosis from insulin resistance in mice and humans. J Clin Invest. 2012;122(6):2176–2194.
-
(2012)
J Clin Invest
, vol.122
, Issue.6
, pp. 2176-2194
-
-
Benhamed, F1
-
37
-
-
85028039032
-
Deletion of hepatic carbohydrate response element binding protein (ChREBP) impairs glucose homeostasis and hepatic insulin sensitivity in mice
-
Jois T, et al. Deletion of hepatic carbohydrate response element binding protein (ChREBP) impairs glucose homeostasis and hepatic insulin sensitivity in mice. Mol Metab. 2017;6(11):1381–1394.
-
(2017)
Mol Metab
, vol.6
, Issue.11
, pp. 1381-1394
-
-
Jois, T1
-
38
-
-
84859921736
-
A novel ChREBP isoform in adipose tissue regulates systemic glucose metabolism
-
Herman MA, et al. A novel ChREBP isoform in adipose tissue regulates systemic glucose metabolism. Nature. 2012;484(7394):333–338.
-
(2012)
Nature
, vol.484
, Issue.7394
, pp. 333-338
-
-
Herman, MA1
|