메뉴 건너뛰기




Volumn 127, Issue 7, 2017, Pages 2855-2867

Lipogenic transcription factor ChREBP mediates fructose-induced metabolic adaptations to prevent hepatotoxicity

Author keywords

[No Author keywords available]

Indexed keywords

ACTIVATING TRANSCRIPTION FACTOR 4; ACTIVATING TRANSCRIPTION FACTOR 6; ALANINE AMINOTRANSFERASE; ATORVASTATIN; CARBOHYDRATE RESPONSE ELEMENT BINDING PROTEIN; CASPASE 3; CHAPERONE; CHOLESTEROL; CYTOKERATIN 18; FRUCTOSE; GLUCOSE REGULATED PROTEIN 78; GROWTH ARREST AND DNA DAMAGE INDUCIBLE PROTEIN 153; IRE1ALPHA PROTEIN; MESSENGER RNA; PHOSPHOTRANSFERASE; PROTEIN KINASE R LIKE ENDOPLASMIC RETICULUM KINASE; PUMA PROTEIN; SHORT HAIRPIN RNA; STEROL REGULATORY ELEMENT BINDING PROTEIN 2; TRANSCRIPTION FACTOR; TRIACYLGLYCEROL; UNCLASSIFIED DRUG; CARBOHYDRATE DIET; MLXIPL PROTEIN, MOUSE; NUCLEAR PROTEIN; PROTEIN BINDING; SREBF2 PROTEIN, MOUSE;

EID: 85021736691     PISSN: 00219738     EISSN: 15588238     Source Type: Journal    
DOI: 10.1172/JCI89934     Document Type: Article
Times cited : (83)

References (47)
  • 1
    • 84856756928 scopus 로고    scopus 로고
    • The role of fructose-enriched diets in mechanisms of nonalcoholic fatty liver disease
    • Nomura K, Yamanouchi T. The role of fructose-enriched diets in mechanisms of nonalcoholic fatty liver disease. J Nutr Biochem. 2012;23(3):203-208.
    • (2012) J Nutr Biochem , vol.23 , Issue.3 , pp. 203-208
    • Nomura, K.1    Yamanouchi, T.2
  • 2
    • 77649337140 scopus 로고    scopus 로고
    • Nonalcoholic fatty liver disease: Pathology and pathogenesis
    • Tiniakos DG, Vos MB, Brunt EM. Nonalcoholic fatty liver disease: pathology and pathogenesis. Annu Rev Pathol. 2010;5:145-171.
    • (2010) Annu Rev Pathol , vol.5 , pp. 145-171
    • Tiniakos, D.G.1    Vos, M.B.2    Brunt, E.M.3
  • 3
    • 84880330917 scopus 로고    scopus 로고
    • Carbohydrate intake and nonalcoholic fatty liver disease
    • Neuschwander-Tetri BA. Carbohydrate intake and nonalcoholic fatty liver disease. Curr Opin Clin Nutr Metab Care. 2013;16(4):446-452.
    • (2013) Curr Opin Clin Nutr Metab Care , vol.16 , Issue.4 , pp. 446-452
    • Neuschwander-Tetri, B.A.1
  • 4
    • 78349283092 scopus 로고    scopus 로고
    • Fructose: A highly lipogenic nutrient implicated in insulin resistance, hepatic steatosis, and the metabolic syndrome
    • Dekker MJ, Su Q, Baker C, Rutledge AC, Adeli K. Fructose: a highly lipogenic nutrient implicated in insulin resistance, hepatic steatosis, and the metabolic syndrome. Am J Physiol Endocrinol Metab. 2010;299(5):E685-E694.
    • (2010) Am J Physiol Endocrinol Metab , vol.299 , Issue.5 , pp. E685-E694
    • Dekker, M.J.1    Su, Q.2    Baker, C.3    Rutledge, A.C.4    Adeli, K.5
  • 5
    • 84857082948 scopus 로고    scopus 로고
    • Differing endoplasmic reticulum stress response to excess lipogenesis versus lipid oversupply in relation to hepatic steatosis and insulin resistance
    • Ren LP, et al. Differing endoplasmic reticulum stress response to excess lipogenesis versus lipid oversupply in relation to hepatic steatosis and insulin resistance. PLoS ONE. 2012;7(2):e30816.
    • (2012) PLoS ONE , vol.7 , Issue.2 , pp. e30816
    • Ren, L.P.1
  • 6
    • 2442435802 scopus 로고    scopus 로고
    • Deficiency of carbohydrate response element-binding protein (ChREBP) reduces lipogenesis as well as glycolysis
    • Iizuka K, Bruick RK, Liang G, Horton JD, Uyeda K. Deficiency of carbohydrate response element-binding protein (ChREBP) reduces lipogenesis as well as glycolysis. Proc Natl Acad Sci USA. 2004;101(19):7281-7286.
    • (2004) Proc Natl Acad Sci USA , vol.101 , Issue.19 , pp. 7281-7286
    • Iizuka, K.1    Bruick, R.K.2    Liang, G.3    Horton, J.D.4    Uyeda, K.5
  • 7
    • 0035979214 scopus 로고    scopus 로고
    • A glucose-responsive transcription factor that regulates carbohydrate metabolism in the liver
    • Yamashita H, et al. A glucose-responsive transcription factor that regulates carbohydrate metabolism in the liver. Proc Natl Acad Sci USA. 2001;98(16):9116-9121.
    • (2001) Proc Natl Acad Sci USA , vol.98 , Issue.16 , pp. 9116-9121
    • Yamashita, H.1
  • 8
    • 84861809881 scopus 로고    scopus 로고
    • The lipogenic transcription factor ChREBP dissociates hepatic steatosis from insulin resistance in mice and humans
    • Benhamed F, et al. The lipogenic transcription factor ChREBP dissociates hepatic steatosis from insulin resistance in mice and humans. J Clin Invest. 2012;122(6):2176-2194.
    • (2012) J Clin Invest , vol.122 , Issue.6 , pp. 2176-2194
    • Benhamed, F.1
  • 9
    • 33749370739 scopus 로고    scopus 로고
    • Liver-specific inhibition of ChREBP improves hepatic steatosis and insulin resistance in ob/ob mice
    • Dentin R, et al. Liver-specific inhibition of ChREBP improves hepatic steatosis and insulin resistance in ob/ob mice. Diabetes. 2006;55(8):2159-2170.
    • (2006) Diabetes , vol.55 , Issue.8 , pp. 2159-2170
    • Dentin, R.1
  • 10
    • 33745896223 scopus 로고    scopus 로고
    • Deficiency of carbohydrate-activated transcription factor ChREBP prevents obesity and improves plasma glucose control in leptin-deficient (ob/ob) mice
    • Iizuka K, Miller B, Uyeda K. Deficiency of carbohydrate-activated transcription factor ChREBP prevents obesity and improves plasma glucose control in leptin-deficient (ob/ob) mice. Am J Physiol Endocrinol Metab. 2006;291(2):E358-E364.
    • (2006) Am J Physiol Endocrinol Metab , vol.291 , Issue.2 , pp. E358-E364
    • Iizuka, K.1    Miller, B.2    Uyeda, K.3
  • 11
    • 84942553596 scopus 로고    scopus 로고
    • Novel role for carbohydrate responsive element binding protein in the control of ethanol metabolism and susceptibility to binge drinking
    • Marmier S, et al. Novel role for carbohydrate responsive element binding protein in the control of ethanol metabolism and susceptibility to binge drinking. Hepatology. 2015;62(4):1086-1100.
    • (2015) Hepatology , vol.62 , Issue.4 , pp. 1086-1100
    • Marmier, S.1
  • 12
    • 84856111924 scopus 로고    scopus 로고
    • The unfolded protein response: Controlling cell fate decisions under ER stress and beyond
    • Hetz C. The unfolded protein response: controlling cell fate decisions under ER stress and beyond. Nat Rev Mol Cell Biol. 2012;13(2):89-102.
    • (2012) Nat Rev Mol Cell Biol , vol.13 , Issue.2 , pp. 89-102
    • Hetz, C.1
  • 13
    • 84858987289 scopus 로고    scopus 로고
    • Pharmacologic ER stress induces non-alcoholic steatohepatitis in an animal model
    • Lee JS, Zheng Z, Mendez R, Ha SW, Xie Y, Zhang K. Pharmacologic ER stress induces non-alcoholic steatohepatitis in an animal model. Toxicol Lett. 2012;211(1):29-38.
    • (2012) Toxicol Lett , vol.211 , Issue.1 , pp. 29-38
    • Lee, J.S.1    Zheng, Z.2    Mendez, R.3    Ha, S.W.4    Xie, Y.5    Zhang, K.6
  • 14
    • 84925851378 scopus 로고    scopus 로고
    • A century of cholesterol and coronaries: From plaques to genes to statins
    • Goldstein JL, Brown MS. A century of cholesterol and coronaries: from plaques to genes to statins. Cell. 2015;161(1):161-172.
    • (2015) Cell , vol.161 , Issue.1 , pp. 161-172
    • Goldstein, J.L.1    Brown, M.S.2
  • 15
    • 84872493396 scopus 로고    scopus 로고
    • Cholesterol metabolism and the pathogenesis of non-alcoholic steatohepatitis
    • Musso G, Gambino R, Cassader M. Cholesterol metabolism and the pathogenesis of non-alcoholic steatohepatitis. Prog Lipid Res. 2013;52(1):175-191.
    • (2013) Prog Lipid Res , vol.52 , Issue.1 , pp. 175-191
    • Musso, G.1    Gambino, R.2    Cassader, M.3
  • 16
    • 84860469242 scopus 로고    scopus 로고
    • Increased hepatic synthesis and dysregulation of cholesterol metabolism is associated with the severity of nonalcoholic fatty liver disease
    • Min HK, et al. Increased hepatic synthesis and dysregulation of cholesterol metabolism is associated with the severity of nonalcoholic fatty liver disease. Cell Metab. 2012;15(5):665-674.
    • (2012) Cell Metab , vol.15 , Issue.5 , pp. 665-674
    • Min, H.K.1
  • 18
    • 36349024819 scopus 로고    scopus 로고
    • A lipidomic analysis of nonalcoholic fatty liver disease
    • Puri P, et al. A lipidomic analysis of nonalcoholic fatty liver disease. Hepatology. 2007;46(4):1081-1090.
    • (2007) Hepatology , vol.46 , Issue.4 , pp. 1081-1090
    • Puri, P.1
  • 19
    • 33747626511 scopus 로고    scopus 로고
    • Mitochondrial free cholesterol loading sensitizes to TNF- and Fas-mediated steatohepatitis
    • Mari M, et al. Mitochondrial free cholesterol loading sensitizes to TNF- and Fas-mediated steatohepatitis. Cell Metab. 2006;4(3):185-198.
    • (2006) Cell Metab , vol.4 , Issue.3 , pp. 185-198
    • Mari, M.1
  • 20
    • 80053612479 scopus 로고    scopus 로고
    • Hepatic free cholesterol accumulates in obese, diabetic mice and causes nonalcoholic steatohepatitis
    • Van Rooyen DM, et al. Hepatic free cholesterol accumulates in obese, diabetic mice and causes nonalcoholic steatohepatitis. Gastroenterology. 2011;141(4):1393-1403.
    • (2011) Gastroenterology , vol.141 , Issue.4 , pp. 1393-1403
    • Van Rooyen, D.M.1
  • 21
    • 84886558949 scopus 로고    scopus 로고
    • Mechanisms of hepatic triglyceride accumulation in non-alcoholic fatty liver disease
    • Kawano Y, Cohen DE. Mechanisms of hepatic triglyceride accumulation in non-alcoholic fatty liver disease. J Gastroenterol. 2013;48(4):434-441.
    • (2013) J Gastroenterol , vol.48 , Issue.4 , pp. 434-441
    • Kawano, Y.1    Cohen, D.E.2
  • 22
    • 78649855297 scopus 로고    scopus 로고
    • Salt-inducible kinase 2 links transcriptional coactivator p300 phosphorylation to the prevention of ChREBP-dependent hepatic steatosis in mice
    • Bricambert J, Miranda J, Benhamed F, Girard J, Postic C, Dentin R. Salt-inducible kinase 2 links transcriptional coactivator p300 phosphorylation to the prevention of ChREBP-dependent hepatic steatosis in mice. J Clin Invest. 2010;120(12):4316-4331.
    • (2010) J Clin Invest , vol.120 , Issue.12 , pp. 4316-4331
    • Bricambert, J.1    Miranda, J.2    Benhamed, F.3    Girard, J.4    Postic, C.5    Dentin, R.6
  • 23
    • 77955474305 scopus 로고    scopus 로고
    • Increased fibroblast growth factor 21 in obesity and nonalcoholic fatty liver disease
    • Dushay J, et al. Increased fibroblast growth factor 21 in obesity and nonalcoholic fatty liver disease. Gastroenterology. 2010;139(2):456-463.
    • (2010) Gastroenterology , vol.139 , Issue.2 , pp. 456-463
    • Dushay, J.1
  • 24
    • 77957359658 scopus 로고    scopus 로고
    • Fibroblast growth factor 21 levels are increased in nonalcoholic fatty liver disease patients and are correlated with hepatic triglyceride
    • Li H, et al. Fibroblast growth factor 21 levels are increased in nonalcoholic fatty liver disease patients and are correlated with hepatic triglyceride. J Hepatol. 2010;53(5):934-940.
    • (2010) J Hepatol , vol.53 , Issue.5 , pp. 934-940
    • Li, H.1
  • 25
    • 33751513394 scopus 로고    scopus 로고
    • Hierarchical regulation of mitochondrion-dependent apoptosis by BCL-2 subfamilies
    • Kim H, et al. Hierarchical regulation of mitochondrion-dependent apoptosis by BCL-2 subfamilies. Nat Cell Biol. 2006;8(12):1348-1358.
    • (2006) Nat Cell Biol , vol.8 , Issue.12 , pp. 1348-1358
    • Kim, H.1
  • 26
    • 10744228800 scopus 로고    scopus 로고
    • Puma is an essential mediator of p53-dependent and -independent apoptotic pathways
    • Jeffers JR, et al. Puma is an essential mediator of p53-dependent and -independent apoptotic pathways. Cancer Cell. 2003;4(4):321-328.
    • (2003) Cancer Cell , vol.4 , Issue.4 , pp. 321-328
    • Jeffers, J.R.1
  • 27
    • 84930812073 scopus 로고    scopus 로고
    • Expression of PUMA in follicular granulosa cells regulated by FoxO1 activation during oxidative stress
    • Liu ZQ, et al. Expression of PUMA in follicular granulosa cells regulated by FoxO1 activation during oxidative stress. Reprod Sci. 2015;22(6):696-705.
    • (2015) Reprod Sci , vol.22 , Issue.6 , pp. 696-705
    • Liu, Z.Q.1
  • 29
    • 74949101860 scopus 로고    scopus 로고
    • Pivotal role of calcium/calmodulin-dependent protein kinase II in ER stress-induced apoptosis
    • Ozcan L, Tabas I. Pivotal role of calcium/calmodulin-dependent protein kinase II in ER stress-induced apoptosis. Cell Cycle. 2010;9(2):223-224.
    • (2010) Cell Cycle , vol.9 , Issue.2 , pp. 223-224
    • Ozcan, L.1    Tabas, I.2
  • 30
    • 70349696241 scopus 로고    scopus 로고
    • Calcium/calmodulin-dependent protein kinase II links ER stress with Fas and mitochondrial apoptosis pathways
    • Timmins JM, et al. Calcium/calmodulin-dependent protein kinase II links ER stress with Fas and mitochondrial apoptosis pathways. J Clin Invest. 2009;119(10):2925-2941.
    • (2009) J Clin Invest , vol.119 , Issue.10 , pp. 2925-2941
    • Timmins, J.M.1
  • 31
    • 24344495336 scopus 로고    scopus 로고
    • Sodium 4-phenylbutyrate protects against liver ischemia reperfusion injury by inhibition of endoplasmic reticulum-stress mediated apoptosis
    • Vilatoba M, et al. Sodium 4-phenylbutyrate protects against liver ischemia reperfusion injury by inhibition of endoplasmic reticulum-stress mediated apoptosis. Surgery. 2005;138(2):342-351.
    • (2005) Surgery , vol.138 , Issue.2 , pp. 342-351
    • Vilatoba, M.1
  • 32
    • 4844224132 scopus 로고    scopus 로고
    • Sodium 4-phenylbutyrate protects against cerebral ischemic injury
    • Qi X, Hosoi T, Okuma Y, Kaneko M, Nomura Y. Sodium 4-phenylbutyrate protects against cerebral ischemic injury. Mol Pharmacol. 2004;66(4):899-908.
    • (2004) Mol Pharmacol , vol.66 , Issue.4 , pp. 899-908
    • Qi, X.1    Hosoi, T.2    Okuma, Y.3    Kaneko, M.4    Nomura, Y.5
  • 33
    • 84882855544 scopus 로고    scopus 로고
    • CHOP is a critical regulator of acetaminophen-induced hepatotoxicity
    • Uzi D, et al. CHOP is a critical regulator of acetaminophen-induced hepatotoxicity. J Hepatol. 2013;59(3):495-503.
    • (2013) J Hepatol , vol.59 , Issue.3 , pp. 495-503
    • Uzi, D.1
  • 34
    • 28244470819 scopus 로고    scopus 로고
    • The ER stress pathway involving CHOP is activated in the lungs of LPS-treated mice
    • Endo M, Oyadomari S, Suga M, Mori M, Gotoh T. The ER stress pathway involving CHOP is activated in the lungs of LPS-treated mice. J Biochem. 2005;138(4):501-507.
    • (2005) J Biochem , vol.138 , Issue.4 , pp. 501-507
    • Endo, M.1    Oyadomari, S.2    Suga, M.3    Mori, M.4    Gotoh, T.5
  • 35
    • 0036251153 scopus 로고    scopus 로고
    • SREBPs: Activators of the complete program of cholesterol and fatty acid synthesis in the liver
    • Horton JD, Goldstein JL, Brown MS. SREBPs: activators of the complete program of cholesterol and fatty acid synthesis in the liver. J Clin Invest. 2002;109(9):1125-1131.
    • (2002) J Clin Invest , vol.109 , Issue.9 , pp. 1125-1131
    • Horton, J.D.1    Goldstein, J.L.2    Brown, M.S.3
  • 36
    • 33847709027 scopus 로고    scopus 로고
    • SREBP in signal transduction: Cholesterol metabolism and beyond
    • Bengoechea-Alonso MT, Ericsson J. SREBP in signal transduction: cholesterol metabolism and beyond. Curr Opin Cell Biol. 2007;19(2):215-222.
    • (2007) Curr Opin Cell Biol , vol.19 , Issue.2 , pp. 215-222
    • Bengoechea-Alonso, M.T.1    Ericsson, J.2
  • 37
    • 84879090877 scopus 로고    scopus 로고
    • Dietary fructose in nonalcoholic fatty liver disease
    • Vos MB, Lavine JE. Dietary fructose in nonalcoholic fatty liver disease. Hepatology. 2013;57(6):2525-2531.
    • (2013) Hepatology , vol.57 , Issue.6 , pp. 2525-2531
    • Vos, M.B.1    Lavine, J.E.2
  • 38
    • 84905175079 scopus 로고    scopus 로고
    • Energy metabolism in the liver
    • Rui L. Energy metabolism in the liver. Compr Physiol. 2014;4(1):177-197.
    • (2014) Compr Physiol , vol.4 , Issue.1 , pp. 177-197
    • Rui, L.1
  • 39
    • 85008970966 scopus 로고    scopus 로고
    • Transcriptional Regulation of de Novo Lipogenesis in Liver
    • Ntambi, JM, ed., New York, NY; Springer
    • Zhang D, Yin L. Transcriptional Regulation of De Novo Lipogenesis in Liver. In: Ntambi, JM, ed. Hepatic De Novo Lipogenesis and Regulation of Metabolism. New York, NY; Springer; 2016:1-31.
    • (2016) Hepatic de Novo Lipogenesis and Regulation of Metabolism , pp. 1-31
    • Zhang, D.1    Yin, L.2
  • 40
    • 79952264011 scopus 로고    scopus 로고
    • Integrating the mechanisms of apoptosis induced by endoplasmic reticulum stress
    • Tabas I, Ron D. Integrating the mechanisms of apoptosis induced by endoplasmic reticulum stress. Nat Cell Biol. 2011;13(3):184-190.
    • (2011) Nat Cell Biol , vol.13 , Issue.3 , pp. 184-190
    • Tabas, I.1    Ron, D.2
  • 41
    • 84879132692 scopus 로고    scopus 로고
    • Pharmacological cholesterol lowering reverses fibrotic NASH in obese, diabetic mice with metabolic syndrome
    • Van Rooyen DM, et al. Pharmacological cholesterol lowering reverses fibrotic NASH in obese, diabetic mice with metabolic syndrome. J Hepatol. 2013;59(1):144-152.
    • (2013) J Hepatol , vol.59 , Issue.1 , pp. 144-152
    • Van Rooyen, D.M.1
  • 42
    • 84921718665 scopus 로고    scopus 로고
    • MiR-21 regulates triglyceride and cholesterol metabolism in non-alcoholic fatty liver disease by targeting HMGCR
    • Sun C, et al. miR-21 regulates triglyceride and cholesterol metabolism in non-alcoholic fatty liver disease by targeting HMGCR. Int J Mol Med. 2015;35(3):847-853.
    • (2015) Int J Mol Med , vol.35 , Issue.3 , pp. 847-853
    • Sun, C.1
  • 43
    • 80053936803 scopus 로고    scopus 로고
    • Expression and localization of microRNAs in perinatal rat pancreas: Role of miR-21 in regulation of cholesterol metabolism
    • Larsen L, et al. Expression and localization of microRNAs in perinatal rat pancreas: role of miR-21 in regulation of cholesterol metabolism. PLoS ONE. 2011;6(10):e25997.
    • (2011) PLoS ONE , vol.6 , Issue.10 , pp. e25997
    • Larsen, L.1
  • 44
    • 77953787211 scopus 로고    scopus 로고
    • MiR-33 contributes to the regulation of cholesterol homeostasis
    • Rayner KJ, et al. MiR-33 contributes to the regulation of cholesterol homeostasis. Science. 2010;328(5985):1570-1573.
    • (2010) Science , vol.328 , Issue.5985 , pp. 1570-1573
    • Rayner, K.J.1
  • 45
    • 23844530704 scopus 로고    scopus 로고
    • Control of lipid metabolism by phosphorylation-dependent degradation of the SREBP family of transcription factors by SCF(Fbw7)
    • Sundqvist A, et al. Control of lipid metabolism by phosphorylation-dependent degradation of the SREBP family of transcription factors by SCF(Fbw7). Cell Metab. 2005;1(6):379-391.
    • (2005) Cell Metab , vol.1 , Issue.6 , pp. 379-391
    • Sundqvist, A.1
  • 46
    • 84884134120 scopus 로고    scopus 로고
    • Hepatic SREBP-2 and cholesterol biosynthesis are regulated by FoxO3 and Sirt6
    • Tao R, Xiong X, DePinho RA, Deng CX, Dong XC. Hepatic SREBP-2 and cholesterol biosynthesis are regulated by FoxO3 and Sirt6. J Lipid Res. 2013;54(10):2745-2753.
    • (2013) J Lipid Res , vol.54 , Issue.10 , pp. 2745-2753
    • Tao, R.1    Xiong, X.2    DePinho, R.A.3    Deng, C.X.4    Dong, X.C.5
  • 47
    • 77954488637 scopus 로고    scopus 로고
    • Conserved role of SIRT1 orthologs in fasting-dependent inhibition of the lipid/cholesterol regulator SREBP
    • Walker AK, et al. Conserved role of SIRT1 orthologs in fasting-dependent inhibition of the lipid/cholesterol regulator SREBP. Genes Dev. 2010;24(13):1403-1417.
    • (2010) Genes Dev , vol.24 , Issue.13 , pp. 1403-1417
    • Walker, A.K.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.