-
1
-
-
2142815151
-
Consumption of high-fructose corn syrup in beverages may play a role in the epidemic of obesity
-
[1] Bray, G.A., Nielsen, S.J., Popkin, B.M., Consumption of high-fructose corn syrup in beverages may play a role in the epidemic of obesity. American Journal of Clinical Nutrition 79:4 (2004), 537–543.
-
(2004)
American Journal of Clinical Nutrition
, vol.79
, Issue.4
, pp. 537-543
-
-
Bray, G.A.1
Nielsen, S.J.2
Popkin, B.M.3
-
2
-
-
84930788424
-
Nonalcoholic fatty liver disease: a systematic review
-
[2] Rinella, M.E., Nonalcoholic fatty liver disease: a systematic review. JAMA 313:22 (2015), 2263–2273.
-
(2015)
JAMA
, vol.313
, Issue.22
, pp. 2263-2273
-
-
Rinella, M.E.1
-
3
-
-
34848830434
-
Long term nutritional intake and the risk for non-alcoholic fatty liver disease (NAFLD): a population based study
-
[3] Zelber-Sagi, S., Nitzan-Kaluski, D., Goldsmith, R., Webb, M., Blendis, L., Halpern, Z., et al. Long term nutritional intake and the risk for non-alcoholic fatty liver disease (NAFLD): a population based study. Journal of Hepatology 47:5 (2007), 711–717.
-
(2007)
Journal of Hepatology
, vol.47
, Issue.5
, pp. 711-717
-
-
Zelber-Sagi, S.1
Nitzan-Kaluski, D.2
Goldsmith, R.3
Webb, M.4
Blendis, L.5
Halpern, Z.6
-
4
-
-
84942372343
-
Sugar-sweetened beverage, diet soda, and fatty liver disease in the Framingham Heart Study cohorts
-
[4] Ma, J., Fox, C.S., Jacques, P.F., Speliotes, E.K., Hoffmann, U., Smith, C.E., et al. Sugar-sweetened beverage, diet soda, and fatty liver disease in the Framingham Heart Study cohorts. Journal of Hepatology 63:2 (2015), 462–469, 10.1016/j.jhep.2015.03.032.
-
(2015)
Journal of Hepatology
, vol.63
, Issue.2
, pp. 462-469
-
-
Ma, J.1
Fox, C.S.2
Jacques, P.F.3
Speliotes, E.K.4
Hoffmann, U.5
Smith, C.E.6
-
5
-
-
66449093225
-
Consuming fructose-sweetened, not glucose-sweetened, beverages increases visceral adiposity and lipids and decreases insulin sensitivity in overweight/obese humans
-
[5] Stanhope, K.L., Schwarz, J.M., Keim, N.L., Griffen, S.C., Bremer, A.A., Graham, J.L., et al. Consuming fructose-sweetened, not glucose-sweetened, beverages increases visceral adiposity and lipids and decreases insulin sensitivity in overweight/obese humans. Journal of Clinical Investigation 119:5 (2009), 1322–1334.
-
(2009)
Journal of Clinical Investigation
, vol.119
, Issue.5
, pp. 1322-1334
-
-
Stanhope, K.L.1
Schwarz, J.M.2
Keim, N.L.3
Griffen, S.C.4
Bremer, A.A.5
Graham, J.L.6
-
6
-
-
84930809200
-
Effect of a high-fructose weight-maintaining diet on lipogenesis and liver fat
-
[6] Schwarz, J.M., Noworolski, S.M., Wen, M.J., Dyachenko, A., Prior, J.L., Weinberg, M.E., et al. Effect of a high-fructose weight-maintaining diet on lipogenesis and liver fat. Journal of Clinical Endocrinology and Metabolism 100:6 (2015), 2434–2442.
-
(2015)
Journal of Clinical Endocrinology and Metabolism
, vol.100
, Issue.6
, pp. 2434-2442
-
-
Schwarz, J.M.1
Noworolski, S.M.2
Wen, M.J.3
Dyachenko, A.4
Prior, J.L.5
Weinberg, M.E.6
-
7
-
-
79952303537
-
A dual sugar challenge test for lipogenic sensitivity to dietary fructose
-
[7] Hudgins, L.C., Parker, T.S., Levine, D.M., Hellerstein, M.K., A dual sugar challenge test for lipogenic sensitivity to dietary fructose. Journal of Clinical Endocrinology and Metabolism 96:3 (2011), 861–868.
-
(2011)
Journal of Clinical Endocrinology and Metabolism
, vol.96
, Issue.3
, pp. 861-868
-
-
Hudgins, L.C.1
Parker, T.S.2
Levine, D.M.3
Hellerstein, M.K.4
-
8
-
-
18244382304
-
Sources of fatty acids stored in liver and secreted via lipoproteins in patients with nonalcoholic fatty liver disease
-
[8] Donnelly, K.L., Smith, C.I., Schwarzenberg, S.J., Jessurun, J., Boldt, M.D., Parks, E.J., Sources of fatty acids stored in liver and secreted via lipoproteins in patients with nonalcoholic fatty liver disease. Journal of Clinical Investigation 115:5 (2005), 1343–1351.
-
(2005)
Journal of Clinical Investigation
, vol.115
, Issue.5
, pp. 1343-1351
-
-
Donnelly, K.L.1
Smith, C.I.2
Schwarzenberg, S.J.3
Jessurun, J.4
Boldt, M.D.5
Parks, E.J.6
-
9
-
-
84894327806
-
Increased de novo lipogenesis is a distinct characteristic of individuals with nonalcoholic fatty liver disease
-
[9] Lambert, J.E., Ramos-Roman, M.A., Browning, J.D., Parks, E.J., Increased de novo lipogenesis is a distinct characteristic of individuals with nonalcoholic fatty liver disease. Gastroenterology 146:3 (2014), 726–735.
-
(2014)
Gastroenterology
, vol.146
, Issue.3
, pp. 726-735
-
-
Lambert, J.E.1
Ramos-Roman, M.A.2
Browning, J.D.3
Parks, E.J.4
-
10
-
-
0027364672
-
Intermediary metabolism of fructose
-
[10] Mayes, P.A., Intermediary metabolism of fructose. American Journal of Clinical Nutrition 58:5 Suppl (1993), 754S–765S.
-
(1993)
American Journal of Clinical Nutrition
, vol.58
, Issue.5
, pp. 754S-765S
-
-
Mayes, P.A.1
-
11
-
-
84880131754
-
Adverse metabolic effects of dietary fructose: results from the recent epidemiological, clinical, and mechanistic studies
-
[11] Stanhope, K.L., Schwarz, J.M., Havel, P.J., Adverse metabolic effects of dietary fructose: results from the recent epidemiological, clinical, and mechanistic studies. Current Opinion in Lipidology 24:3 (2013), 198–206.
-
(2013)
Current Opinion in Lipidology
, vol.24
, Issue.3
, pp. 198-206
-
-
Stanhope, K.L.1
Schwarz, J.M.2
Havel, P.J.3
-
12
-
-
84994666911
-
ChREBP regulates fructose-induced glucose production independently of insulin signaling
-
Nov 1
-
[12] Kim, M.S., Krawczyk, S.A., Doridot, L., Fowler, A.J., Wang, J.X., Trauger, S.A., et al. ChREBP regulates fructose-induced glucose production independently of insulin signaling. Journal of Clinical Investigation 126:11 (2016 Nov 1), 4372–4386.
-
(2016)
Journal of Clinical Investigation
, vol.126
, Issue.11
, pp. 4372-4386
-
-
Kim, M.S.1
Krawczyk, S.A.2
Doridot, L.3
Fowler, A.J.4
Wang, J.X.5
Trauger, S.A.6
-
13
-
-
2442435802
-
Deficiency of carbohydrate response element-binding protein (ChREBP) reduces lipogenesis as well as glycolysis
-
[13] Iizuka, K., Bruick, R.K., Liang, G., Horton, J.D., Uyeda, K., Deficiency of carbohydrate response element-binding protein (ChREBP) reduces lipogenesis as well as glycolysis. Proceedings of the National Academy of Sciences of the United States of America 101:19 (2004), 7281–7286.
-
(2004)
Proceedings of the National Academy of Sciences of the United States of America
, vol.101
, Issue.19
, pp. 7281-7286
-
-
Iizuka, K.1
Bruick, R.K.2
Liang, G.3
Horton, J.D.4
Uyeda, K.5
-
14
-
-
84977079006
-
The sweet path to metabolic demise: fructose and lipid synthesis
-
Oct
-
[14] Herman, M.A., Samuel, V.T., The sweet path to metabolic demise: fructose and lipid synthesis. Trends in Endocrinology and Metabolism 27:10 (2016 Oct), 719–730.
-
(2016)
Trends in Endocrinology and Metabolism
, vol.27
, Issue.10
, pp. 719-730
-
-
Herman, M.A.1
Samuel, V.T.2
-
15
-
-
34249711964
-
Hepatic fibroblast growth factor 21 is regulated by PPARalpha and is a key mediator of hepatic lipid metabolism in ketotic states
-
[15] Badman, M.K., Pissios, P., Kennedy, A.R., Koukos, G., Flier, J.S., Maratos-Flier, E., Hepatic fibroblast growth factor 21 is regulated by PPARalpha and is a key mediator of hepatic lipid metabolism in ketotic states. Cell Metabolism 5:6 (2007), 426–437.
-
(2007)
Cell Metabolism
, vol.5
, Issue.6
, pp. 426-437
-
-
Badman, M.K.1
Pissios, P.2
Kennedy, A.R.3
Koukos, G.4
Flier, J.S.5
Maratos-Flier, E.6
-
16
-
-
20444435873
-
FGF-21 as a novel metabolic regulator
-
[16] Kharitonenkov, A., Shiyanova, T.L., Koester, A., Ford, A.M., Micanovic, R., Galbreath, E.J., et al. FGF-21 as a novel metabolic regulator. Journal of Clinical Investigation 115:6 (2005), 1627–1635.
-
(2005)
Journal of Clinical Investigation
, vol.115
, Issue.6
, pp. 1627-1635
-
-
Kharitonenkov, A.1
Shiyanova, T.L.2
Koester, A.3
Ford, A.M.4
Micanovic, R.5
Galbreath, E.J.6
-
17
-
-
84911917697
-
Circulating FGF21 is liver derived and enhances glucose uptake during refeeding and overfeeding
-
[17] Markan, K.R., Naber, M.C., Ameka, M.K., Anderegg, M.D., Mangelsdorf, D.J., Kliewer, S.A., et al. Circulating FGF21 is liver derived and enhances glucose uptake during refeeding and overfeeding. Diabetes 63:12 (2014), 4057–4063.
-
(2014)
Diabetes
, vol.63
, Issue.12
, pp. 4057-4063
-
-
Markan, K.R.1
Naber, M.C.2
Ameka, M.K.3
Anderegg, M.D.4
Mangelsdorf, D.J.5
Kliewer, S.A.6
-
18
-
-
84945912355
-
FGF21 revolutions: recent advances illuminating FGF21 biology and medicinal properties
-
[18] Kharitonenkov, A., DiMarchi, R., FGF21 revolutions: recent advances illuminating FGF21 biology and medicinal properties. Trends in Endocrinology and Metabolism 26:11 (2015), 608–617.
-
(2015)
Trends in Endocrinology and Metabolism
, vol.26
, Issue.11
, pp. 608-617
-
-
Kharitonenkov, A.1
DiMarchi, R.2
-
19
-
-
67649823642
-
FGF21 induces PGC-1alpha and regulates carbohydrate and fatty acid metabolism during the adaptive starvation response
-
[19] Potthoff, M.J., Inagaki, T., Satapati, S., Ding, X., He, T., Goetz, R., et al. FGF21 induces PGC-1alpha and regulates carbohydrate and fatty acid metabolism during the adaptive starvation response. Proceedings of the National Academy of Sciences of the United States of America 106:26 (2009), 10853–10858.
-
(2009)
Proceedings of the National Academy of Sciences of the United States of America
, vol.106
, Issue.26
, pp. 10853-10858
-
-
Potthoff, M.J.1
Inagaki, T.2
Satapati, S.3
Ding, X.4
He, T.5
Goetz, R.6
-
20
-
-
34249686631
-
Endocrine regulation of the fasting response by PPARalpha-mediated induction of fibroblast growth factor 21
-
[20] Inagaki, T., Dutchak, P., Zhao, G., Ding, X., Gautron, L., Parameswara, V., et al. Endocrine regulation of the fasting response by PPARalpha-mediated induction of fibroblast growth factor 21. Cell Metabolism 5:6 (2007), 415–425.
-
(2007)
Cell Metabolism
, vol.5
, Issue.6
, pp. 415-425
-
-
Inagaki, T.1
Dutchak, P.2
Zhao, G.3
Ding, X.4
Gautron, L.5
Parameswara, V.6
-
21
-
-
84896838463
-
Liver-enriched transcription factor CREBH interacts with peroxisome proliferator-activated receptor alpha to regulate metabolic hormone FGF21
-
[21] Kim, H., Mendez, R., Zheng, Z., Chang, L., Cai, J., Zhang, R., et al. Liver-enriched transcription factor CREBH interacts with peroxisome proliferator-activated receptor alpha to regulate metabolic hormone FGF21. Endocrinology 155:3 (2014), 769–782.
-
(2014)
Endocrinology
, vol.155
, Issue.3
, pp. 769-782
-
-
Kim, H.1
Mendez, R.2
Zheng, Z.3
Chang, L.4
Cai, J.5
Zhang, R.6
-
22
-
-
84974815432
-
CREBH-FGF21 axis improves hepatic steatosis by suppressing adipose tissue lipolysis
-
[22] Park, J.G., Xu, X., Cho, S., Hur, K.Y., Lee, M.S., Kersten, S., et al. CREBH-FGF21 axis improves hepatic steatosis by suppressing adipose tissue lipolysis. Scientific Reports, 6, 2016, 27938.
-
(2016)
Scientific Reports
, vol.6
, pp. 27938
-
-
Park, J.G.1
Xu, X.2
Cho, S.3
Hur, K.Y.4
Lee, M.S.5
Kersten, S.6
-
23
-
-
77955474305
-
Increased fibroblast growth factor 21 in obesity and nonalcoholic fatty liver disease
-
[23] Dushay, J., Chui, P.C., Gopalakrishnan, G.S., Varela-Rey, M., Crawley, M., Fisher, F.M., et al. Increased fibroblast growth factor 21 in obesity and nonalcoholic fatty liver disease. Gastroenterology 139:2 (2010), 456–463.
-
(2010)
Gastroenterology
, vol.139
, Issue.2
, pp. 456-463
-
-
Dushay, J.1
Chui, P.C.2
Gopalakrishnan, G.S.3
Varela-Rey, M.4
Crawley, M.5
Fisher, F.M.6
-
24
-
-
69949107891
-
Circulating fibroblast growth factor 21 is induced by peroxisome proliferator-activated receptor agonists but not ketosis in man
-
[24] Christodoulides, C., Dyson, P., Sprecher, D., Tsintzas, K., Karpe, F., Circulating fibroblast growth factor 21 is induced by peroxisome proliferator-activated receptor agonists but not ketosis in man. Journal of Clinical Endocrinology and Metabolism 94:9 (2009), 3594–3601.
-
(2009)
Journal of Clinical Endocrinology and Metabolism
, vol.94
, Issue.9
, pp. 3594-3601
-
-
Christodoulides, C.1
Dyson, P.2
Sprecher, D.3
Tsintzas, K.4
Karpe, F.5
-
25
-
-
48349127924
-
The circulating metabolic regulator FGF21 is induced by prolonged fasting and PPARalpha activation in man
-
[25] Galman, C., Lundasen, T., Kharitonenkov, A., Bina, H.A., Eriksson, M., Hafstrom, I., et al. The circulating metabolic regulator FGF21 is induced by prolonged fasting and PPARalpha activation in man. Cell Metabolism 8:2 (2008), 169–174.
-
(2008)
Cell Metabolism
, vol.8
, Issue.2
, pp. 169-174
-
-
Galman, C.1
Lundasen, T.2
Kharitonenkov, A.3
Bina, H.A.4
Eriksson, M.5
Hafstrom, I.6
-
26
-
-
71949094496
-
Response to carbohydrate and fat refeeding in the expression of genes involved in nutrient partitioning and metabolism: striking effects on fibroblast growth factor-21 induction
-
[26] Sanchez, J., Palou, A., Pico, C., Response to carbohydrate and fat refeeding in the expression of genes involved in nutrient partitioning and metabolism: striking effects on fibroblast growth factor-21 induction. Endocrinology 150:12 (2009), 5341–5350.
-
(2009)
Endocrinology
, vol.150
, Issue.12
, pp. 5341-5350
-
-
Sanchez, J.1
Palou, A.2
Pico, C.3
-
27
-
-
69249238074
-
Glucose induces FGF21 mRNA expression through ChREBP activation in rat hepatocytes
-
[27] Iizuka, K., Takeda, J., Horikawa, Y., Glucose induces FGF21 mRNA expression through ChREBP activation in rat hepatocytes. FEBS Letters 583:17 (2009), 2882–2886.
-
(2009)
FEBS Letters
, vol.583
, Issue.17
, pp. 2882-2886
-
-
Iizuka, K.1
Takeda, J.2
Horikawa, Y.3
-
28
-
-
84875914619
-
Novel locus including FGF21 is associated with dietary macronutrient intake
-
[28] Chu, A.Y., Workalemahu, T., Paynter, N.P., Rose, L.M., Giulianini, F., Tanaka, T., et al. Novel locus including FGF21 is associated with dietary macronutrient intake. Human Molecular Genetics 22:9 (2013), 1895–1902.
-
(2013)
Human Molecular Genetics
, vol.22
, Issue.9
, pp. 1895-1902
-
-
Chu, A.Y.1
Workalemahu, T.2
Paynter, N.P.3
Rose, L.M.4
Giulianini, F.5
Tanaka, T.6
-
29
-
-
84875922294
-
Genome-wide meta-analysis of observational studies shows common genetic variants associated with macronutrient intake
-
[29] Tanaka, T., Ngwa, J.S., van Rooij, F.J., Zillikens, M.C., Wojczynski, M.K., Frazier-Wood, A.C., et al. Genome-wide meta-analysis of observational studies shows common genetic variants associated with macronutrient intake. American Journal of Clinical Nutrition 97:6 (2013), 1395–1402.
-
(2013)
American Journal of Clinical Nutrition
, vol.97
, Issue.6
, pp. 1395-1402
-
-
Tanaka, T.1
Ngwa, J.S.2
van Rooij, F.J.3
Zillikens, M.C.4
Wojczynski, M.K.5
Frazier-Wood, A.C.6
-
30
-
-
84957949211
-
FGF21 regulates sweet and alcohol preference
-
[30] Talukdar, S., Owen, B.M., Song, P., Hernandez, G., Zhang, Y., Zhou, Y., et al. FGF21 regulates sweet and alcohol preference. Cell Metabolism 23:2 (2016), 344–349.
-
(2016)
Cell Metabolism
, vol.23
, Issue.2
, pp. 344-349
-
-
Talukdar, S.1
Owen, B.M.2
Song, P.3
Hernandez, G.4
Zhang, Y.5
Zhou, Y.6
-
31
-
-
84957975315
-
FGF21 mediates endocrine control of simple sugar intake and sweet taste preference by the liver
-
[31] von Holstein-Rathlou, S., BonDurant, L.D., Peltekian, L., Naber, M.C., Yin, T.C., Claflin, K.E., et al. FGF21 mediates endocrine control of simple sugar intake and sweet taste preference by the liver. Cell Metabolism 23:2 (2016), 335–343.
-
(2016)
Cell Metabolism
, vol.23
, Issue.2
, pp. 335-343
-
-
von Holstein-Rathlou, S.1
BonDurant, L.D.2
Peltekian, L.3
Naber, M.C.4
Yin, T.C.5
Claflin, K.E.6
-
32
-
-
84859921736
-
A novel ChREBP isoform in adipose tissue regulates systemic glucose metabolism
-
[32] Herman, M.A., Peroni, O.D., Villoria, J., Schon, M.R., Abumrad, N.A., Bluher, M., et al. A novel ChREBP isoform in adipose tissue regulates systemic glucose metabolism. Nature 484:7394 (2012), 333–338.
-
(2012)
Nature
, vol.484
, Issue.7394
, pp. 333-338
-
-
Herman, M.A.1
Peroni, O.D.2
Villoria, J.3
Schon, M.R.4
Abumrad, N.A.5
Bluher, M.6
-
33
-
-
84920722614
-
Fructose ingestion acutely stimulates circulating FGF21 levels in humans
-
[33] Dushay, J.R., Toschi, E., Mitten, E.K., Fisher, F.M., Herman, M.A., Maratos-Flier, E., Fructose ingestion acutely stimulates circulating FGF21 levels in humans. Molecular Metabolism 4:1 (2015), 51–57.
-
(2015)
Molecular Metabolism
, vol.4
, Issue.1
, pp. 51-57
-
-
Dushay, J.R.1
Toschi, E.2
Mitten, E.K.3
Fisher, F.M.4
Herman, M.A.5
Maratos-Flier, E.6
-
34
-
-
84908291960
-
Fibroblast growth factor 21 limits lipotoxicity by promoting hepatic fatty acid activation in mice on methionine and choline-deficient diets
-
[34] Fisher, F.M., Chui, P.C., Nasser, I.A., Popov, Y., Cunniff, J.C., Lundasen, T., et al. Fibroblast growth factor 21 limits lipotoxicity by promoting hepatic fatty acid activation in mice on methionine and choline-deficient diets. Gastroenterology 147:5 (2014), 1073–1083 e6.
-
(2014)
Gastroenterology
, vol.147
, Issue.5
, pp. 1073-1083 e6
-
-
Fisher, F.M.1
Chui, P.C.2
Nasser, I.A.3
Popov, Y.4
Cunniff, J.C.5
Lundasen, T.6
-
35
-
-
0020458928
-
Studies of the mechanism of fructose-induced hypertriglyceridemia in the rat
-
[35] Zavaroni, I., Chen, Y.D., Reaven, G.M., Studies of the mechanism of fructose-induced hypertriglyceridemia in the rat. Metabolism 31:11 (1982), 1077–1083.
-
(1982)
Metabolism
, vol.31
, Issue.11
, pp. 1077-1083
-
-
Zavaroni, I.1
Chen, Y.D.2
Reaven, G.M.3
|