메뉴 건너뛰기




Volumn 60, Issue , 2014, Pages 260-276

Optimal variable selection for effective statistical process monitoring

Author keywords

Fault detection; Optimization; Process control; Safety; Systems engineering; Tennessee Eastman Process

Indexed keywords

DIMENSIONALITY REDUCTION; MISSED DETECTIONS; MONITORING MODELS; MONITORING PERFORMANCE; OPTIMAL VARIABLES; STATISTICAL PROCESS MONITORING; TENNESSEE EASTMAN CHALLENGE; TENNESSEE EASTMAN PROCESS;

EID: 84886010646     PISSN: 00981354     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.compchemeng.2013.09.014     Document Type: Article
Times cited : (95)

References (57)
  • 1
    • 0031235825 scopus 로고    scopus 로고
    • Design and retrofit of sensor networks in process plants
    • Bagajewicz M.J. Design and retrofit of sensor networks in process plants. AIChE Journal 1997, 43(9):2300-2306.
    • (1997) AIChE Journal , vol.43 , Issue.9 , pp. 2300-2306
    • Bagajewicz, M.J.1
  • 2
    • 0037012392 scopus 로고    scopus 로고
    • Comprehensive design of a sensor network for chemical plants based on various diagnosability and reliability criteria. 1. Framework
    • Bhushan M., Rengaswamy R. Comprehensive design of a sensor network for chemical plants based on various diagnosability and reliability criteria. 1. Framework. Industrial and Engineering Chemistry Research 2002, 41(7):1826-1839.
    • (2002) Industrial and Engineering Chemistry Research , vol.41 , Issue.7 , pp. 1826-1839
    • Bhushan, M.1    Rengaswamy, R.2
  • 3
    • 0037012443 scopus 로고    scopus 로고
    • Comprehensive design of a sensor network for chemical plants based on various diagnosability and reliability criteria. 2. Applications
    • Bhushan M., Rengaswamy R. Comprehensive design of a sensor network for chemical plants based on various diagnosability and reliability criteria. 2. Applications. Industrial and Engineering Chemistry Research 2002, 41(7):1840-1860.
    • (2002) Industrial and Engineering Chemistry Research , vol.41 , Issue.7 , pp. 1840-1860
    • Bhushan, M.1    Rengaswamy, R.2
  • 5
    • 0034643075 scopus 로고    scopus 로고
    • Fault diagnosis in chemical process using Fisher discrminant analysis, discrminant partial least squares, and principal component analysis
    • Chiang L.H., Russell E.L., Braatz R.D. Fault diagnosis in chemical process using Fisher discrminant analysis, discrminant partial least squares, and principal component analysis. Chemometric and Intelligent Laboratory Systems 2000, 50:243-252.
    • (2000) Chemometric and Intelligent Laboratory Systems , vol.50 , pp. 243-252
    • Chiang, L.H.1    Russell, E.L.2    Braatz, R.D.3
  • 7
    • 79954556438 scopus 로고    scopus 로고
    • Fault diagnosis of batch chemical processes using a dynamic time warping (DTW) based artificial immune system
    • Dai Y., Zhao J. Fault diagnosis of batch chemical processes using a dynamic time warping (DTW) based artificial immune system. Industrial & Engineering Chemistry Research 2011, 50(8):4534-4544.
    • (2011) Industrial & Engineering Chemistry Research , vol.50 , Issue.8 , pp. 4534-4544
    • Dai, Y.1    Zhao, J.2
  • 10
    • 34748873203 scopus 로고    scopus 로고
    • Plant-wide detection and diagnosis using correspondence analysis
    • Detroja K.P., Gudi R.D., Patwardhan S.C. Plant-wide detection and diagnosis using correspondence analysis. Control Engineering Practice 2007, 15(12):1468-1483.
    • (2007) Control Engineering Practice , vol.15 , Issue.12 , pp. 1468-1483
    • Detroja, K.P.1    Gudi, R.D.2    Patwardhan, S.C.3
  • 12
    • 0033636139 scopus 로고    scopus 로고
    • Support vector machine classification and validation of cancer tissue samples using microarray expression data
    • Furey T., Cristianini N., Bednarski D.N., Schummer D.M. Support vector machine classification and validation of cancer tissue samples using microarray expression data. Bioinformatics 2000, 16:906-914.
    • (2000) Bioinformatics , vol.16 , pp. 906-914
    • Furey, T.1    Cristianini, N.2    Bednarski, D.N.3    Schummer, D.M.4
  • 14
    • 0033569406 scopus 로고    scopus 로고
    • Molecular classification of cancer: class discovery and class prediction by gene expression monitoring
    • Golub T.R., Slonim D.K., Tamayo P., Huard C., Gaasenbeek M., Mesirov J.P., et al. Molecular classification of cancer: class discovery and class prediction by gene expression monitoring. Science 1999, 286(5439):531-537.
    • (1999) Science , vol.286 , Issue.5439 , pp. 531-537
    • Golub, T.R.1    Slonim, D.K.2    Tamayo, P.3    Huard, C.4    Gaasenbeek, M.5    Mesirov, J.P.6
  • 15
    • 79952788723 scopus 로고    scopus 로고
    • Immune-system-inspired approach to process monitoring and fault diagnosis
    • Ghosh K., Srinivasan R. Immune-system-inspired approach to process monitoring and fault diagnosis. Industrial & Engineering Chemistry Research 2011, 50(3):1637-1651.
    • (2011) Industrial & Engineering Chemistry Research , vol.50 , Issue.3 , pp. 1637-1651
    • Ghosh, K.1    Srinivasan, R.2
  • 16
    • 79960878195 scopus 로고    scopus 로고
    • Hierarchically distributed fault detection and identification through Dempster-Shafer evidence fusion
    • Ghosh K., Natarajan S., Srinivasan R. Hierarchically distributed fault detection and identification through Dempster-Shafer evidence fusion. Industrial & Engineering Chemistry Research 2011, 50(15):9249-9269.
    • (2011) Industrial & Engineering Chemistry Research , vol.50 , Issue.15 , pp. 9249-9269
    • Ghosh, K.1    Natarajan, S.2    Srinivasan, R.3
  • 17
    • 78651434307 scopus 로고    scopus 로고
    • Evaluation of decision fusion strategies for effective collaboration among heterogeneous fault diagnostic methods
    • Ghosh K., Ng Y.S., Srinivasan R. Evaluation of decision fusion strategies for effective collaboration among heterogeneous fault diagnostic methods. Computers & Chemical Engineering 2011, 35(2):342-355.
    • (2011) Computers & Chemical Engineering , vol.35 , Issue.2 , pp. 342-355
    • Ghosh, K.1    Ng, Y.S.2    Srinivasan, R.3
  • 19
    • 33745561205 scopus 로고    scopus 로고
    • An introduction to variable and feature selection (Kernel Machines Section)
    • Guyon I., Elisseeff A. An introduction to variable and feature selection (Kernel Machines Section). Journal of Machine Learning Research 2003, 3:1157-1182.
    • (2003) Journal of Machine Learning Research , vol.3 , pp. 1157-1182
    • Guyon, I.1    Elisseeff, A.2
  • 20
    • 78751630783 scopus 로고    scopus 로고
    • Hierarchical genetic algorithm with new evaluation function and bi-coded representation for the selection of features considering their confidence rate
    • Hamdani T.M., Won J.M., Alimi A.M., Karray F. Hierarchical genetic algorithm with new evaluation function and bi-coded representation for the selection of features considering their confidence rate. Applied Soft Computing 2011, 11:2501-2509.
    • (2011) Applied Soft Computing , vol.11 , pp. 2501-2509
    • Hamdani, T.M.1    Won, J.M.2    Alimi, A.M.3    Karray, F.4
  • 21
    • 52449116108 scopus 로고    scopus 로고
    • Fault detection using k-nearest neighbor rule for semiconductor manufacturing process
    • He Q.P., Wang J. Fault detection using k-nearest neighbor rule for semiconductor manufacturing process. IEEE Transactions on Semiconductor Manufacturing 2007, 20(4):345-354.
    • (2007) IEEE Transactions on Semiconductor Manufacturing , vol.20 , Issue.4 , pp. 345-354
    • He, Q.P.1    Wang, J.2
  • 23
    • 0242390999 scopus 로고    scopus 로고
    • Multi-objective optimization of an industrial fluidized catalytic cracking unit (FCCU) using genetic algorithm (GA) with the jumping genes operator
    • Kasat R.B., Gupta S.K. Multi-objective optimization of an industrial fluidized catalytic cracking unit (FCCU) using genetic algorithm (GA) with the jumping genes operator. Computers and Chemical Engineering 2003, 27:1785-1800.
    • (2003) Computers and Chemical Engineering , vol.27 , pp. 1785-1800
    • Kasat, R.B.1    Gupta, S.K.2
  • 25
    • 0023591660 scopus 로고
    • Effect of redundancy on estimation accuracy in process data reconciliation
    • Kretsovalis A., Mah H.R.S. Effect of redundancy on estimation accuracy in process data reconciliation. Chemical Engineering Science 1987, 42(9):2115-2121.
    • (1987) Chemical Engineering Science , vol.42 , Issue.9 , pp. 2115-2121
    • Kretsovalis, A.1    Mah, H.R.S.2
  • 26
    • 0030855587 scopus 로고    scopus 로고
    • Decision boundary feature extraction for neural networks
    • Lee C., Landgrebe D.A. Decision boundary feature extraction for neural networks. IEEE Transactions on Neural Networks 1997, 8(1):75-83.
    • (1997) IEEE Transactions on Neural Networks , vol.8 , Issue.1 , pp. 75-83
    • Lee, C.1    Landgrebe, D.A.2
  • 27
    • 34548593553 scopus 로고    scopus 로고
    • Fault detection of non-linear processes using kernel independent component analysis
    • Lee J.-M., Qin S.J., Lee I-B. Fault detection of non-linear processes using kernel independent component analysis. The Canadian Journal of Chemical Engineering 2007, 85:526-536.
    • (2007) The Canadian Journal of Chemical Engineering , vol.85 , pp. 526-536
    • Lee, J.-M.1    Qin, S.J.2    Lee, I.-B.3
  • 28
  • 29
    • 5444225766 scopus 로고    scopus 로고
    • A comparative study on feature selection methods for drug discovery
    • Liu Y. A comparative study on feature selection methods for drug discovery. Journal of Chemical Information Computer Sciences 2004, 44(5):1823-1828.
    • (2004) Journal of Chemical Information Computer Sciences , vol.44 , Issue.5 , pp. 1823-1828
    • Liu, Y.1
  • 30
    • 25444528240 scopus 로고    scopus 로고
    • An entropy-based gene selection method for cancer classification using microarray data
    • Liu X., Krishnan A., Mondry A. An entropy-based gene selection method for cancer classification using microarray data. BMC Bioinformatics 2005, 6:76-89.
    • (2005) BMC Bioinformatics , vol.6 , pp. 76-89
    • Liu, X.1    Krishnan, A.2    Mondry, A.3
  • 32
    • 0038021028 scopus 로고    scopus 로고
    • A comparative study on feature selection and classification methods using gene expression profiles and proteomic pattern
    • Liu H., Li J., Wong L. A comparative study on feature selection and classification methods using gene expression profiles and proteomic pattern. Genome Information 2002, 13:51-60.
    • (2002) Genome Information , vol.13 , pp. 51-60
    • Liu, H.1    Li, J.2    Wong, L.3
  • 33
    • 72149111135 scopus 로고    scopus 로고
    • Fault detection and diagnosis in process data using one-class support vector machines
    • Mahadevan S., Shah S.L. Fault detection and diagnosis in process data using one-class support vector machines. Journal of Process Control 2009, 19:1627-1639.
    • (2009) Journal of Process Control , vol.19 , pp. 1627-1639
    • Mahadevan, S.1    Shah, S.L.2
  • 34
    • 0029270805 scopus 로고
    • Artificial neural networks for feature extraction and multivariate data projection
    • Mao J., Jain A.K. Artificial neural networks for feature extraction and multivariate data projection. IEEE Transactions on Neural Networks 1995, 6(3):296-317.
    • (1995) IEEE Transactions on Neural Networks , vol.6 , Issue.3 , pp. 296-317
    • Mao, J.1    Jain, A.K.2
  • 36
    • 33748337196 scopus 로고    scopus 로고
    • Failure detection using fuzzy neural network with an automatic input selection algorithm
    • Springer, Berlin
    • Na M., Sim Y.R., Park K.H. Failure detection using fuzzy neural network with an automatic input selection algorithm. Power Plant Surveillance and Diagnostics 2002, Springer, Berlin.
    • (2002) Power Plant Surveillance and Diagnostics
    • Na, M.1    Sim, Y.R.2    Park, K.H.3
  • 37
    • 54949084233 scopus 로고    scopus 로고
    • Multivariate temporal data analysis using self-organizing maps 1. Visual exploration of multi-state operations
    • Ng Y.S., Srinivasan R. Multivariate temporal data analysis using self-organizing maps 1. Visual exploration of multi-state operations. Industrial and Engineering Chemistry Research 2008, 47(20):7744-7757.
    • (2008) Industrial and Engineering Chemistry Research , vol.47 , Issue.20 , pp. 7744-7757
    • Ng, Y.S.1    Srinivasan, R.2
  • 38
    • 54949149149 scopus 로고    scopus 로고
    • Multivariate temporal data analysis using self-organizing maps. 2. Monitoring and diagnosis of multi-state operations
    • Ng Y.S., Srinivasan R. Multivariate temporal data analysis using self-organizing maps. 2. Monitoring and diagnosis of multi-state operations. Industrial and Engineering Chemistry Research 2008, 47(20):7758-7771.
    • (2008) Industrial and Engineering Chemistry Research , vol.47 , Issue.20 , pp. 7758-7771
    • Ng, Y.S.1    Srinivasan, R.2
  • 40
    • 24344458137 scopus 로고    scopus 로고
    • Feature selection based on mutual information: Criteria of max-dependency, max-relevance, and min-redundancy
    • Peng H.C., Long F.H., Ding C. Feature selection based on mutual information: Criteria of max-dependency, max-relevance, and min-redundancy. IEEE Transaction on Pattern Analysis and Machine Intelligence 2005, 27(8):1226-1238.
    • (2005) IEEE Transaction on Pattern Analysis and Machine Intelligence , vol.27 , Issue.8 , pp. 1226-1238
    • Peng, H.C.1    Long, F.H.2    Ding, C.3
  • 41
    • 84947841031 scopus 로고
    • Applications of multivariate statistical methods to process monitoring and controller design
    • Piovoso M.J., Kosanovich K.A. Applications of multivariate statistical methods to process monitoring and controller design. International Journal of Control 1994, 59:743-765.
    • (1994) International Journal of Control , vol.59 , pp. 743-765
    • Piovoso, M.J.1    Kosanovich, K.A.2
  • 43
    • 0034621334 scopus 로고    scopus 로고
    • Fault detection in industrial process using canonical variate analysis and dynamic principal component analysis
    • Russell E.L., Chiang L.H., Braatz R.D. Fault detection in industrial process using canonical variate analysis and dynamic principal component analysis. Chemometric and Intelligent Laboratory Systems 2000, 51:81-93.
    • (2000) Chemometric and Intelligent Laboratory Systems , vol.51 , pp. 81-93
    • Russell, E.L.1    Chiang, L.H.2    Braatz, R.D.3
  • 44
    • 0000852513 scopus 로고
    • Multi-objective optimization using non-dominated sorting in genetic algorithm
    • Srinivas N., Deb K. Multi-objective optimization using non-dominated sorting in genetic algorithm. Evolutionary Computation 1994, 2(3):221-248.
    • (1994) Evolutionary Computation , vol.2 , Issue.3 , pp. 221-248
    • Srinivas, N.1    Deb, K.2
  • 45
  • 46
    • 15744402464 scopus 로고    scopus 로고
    • Neural network systems for multi-dimensional temporal pattern classification
    • Srinivasan R., Wang C., Ho W.K., Lim K.W. Neural network systems for multi-dimensional temporal pattern classification. Computer and Chemical Engineering 2005, 29:965-981.
    • (2005) Computer and Chemical Engineering , vol.29 , pp. 965-981
    • Srinivasan, R.1    Wang, C.2    Ho, W.K.3    Lim, K.W.4
  • 47
    • 38549106577 scopus 로고    scopus 로고
    • Sate-specific key variables for monitoring multi-state processes
    • Srinivasan R., Qian M. Sate-specific key variables for monitoring multi-state processes. Chemical Engineering Research and Design 2007, 85:1630-1644.
    • (2007) Chemical Engineering Research and Design , vol.85 , pp. 1630-1644
    • Srinivasan, R.1    Qian, M.2
  • 48
    • 34548758629 scopus 로고    scopus 로고
    • A genetic algorithm-based method for feature subset selection
    • Tan F., Fu X., Zhang Y., Bourgeois A.G. A genetic algorithm-based method for feature subset selection. Soft Computing 2008, 12:111-120.
    • (2008) Soft Computing , vol.12 , pp. 111-120
    • Tan, F.1    Fu, X.2    Zhang, Y.3    Bourgeois, A.G.4
  • 50
    • 0037443771 scopus 로고    scopus 로고
    • A review of process fault detection and diagnosis Part II: Qualitative models and search strategies
    • Venkatasubramanian V., Rengaswamy R., Kavuri S.N. A review of process fault detection and diagnosis Part II: Qualitative models and search strategies. Computers and Chemical Engineering 2003, 27:313-326.
    • (2003) Computers and Chemical Engineering , vol.27 , pp. 313-326
    • Venkatasubramanian, V.1    Rengaswamy, R.2    Kavuri, S.N.3
  • 52
    • 42949143535 scopus 로고    scopus 로고
    • Fault detection and identification with a new feature selection based on mutual information
    • Verron S., Tiplica T., Kobi A. Fault detection and identification with a new feature selection based on mutual information. Journal of Process Control 2008, 18:479-490.
    • (2008) Journal of Process Control , vol.18 , pp. 479-490
    • Verron, S.1    Tiplica, T.2    Kobi, A.3
  • 53
    • 26844497648 scopus 로고    scopus 로고
    • Fault feature selection based on modified binary pso with mutation and its application in chemical process fault diagnosis
    • Springer, Berlin
    • Wang L., Yu J. Fault feature selection based on modified binary pso with mutation and its application in chemical process fault diagnosis. Lecture Notes in Computer Science (LNCS) 3612 2005, 832-840. Springer, Berlin.
    • (2005) Lecture Notes in Computer Science (LNCS) 3612 , pp. 832-840
    • Wang, L.1    Yu, J.2
  • 54
    • 53349175658 scopus 로고    scopus 로고
    • Fault detection and diagnosis of nonlinear process using improved kernel independent component analysis (KICA) and support vector machine (SVM)
    • Zhang Y. Fault detection and diagnosis of nonlinear process using improved kernel independent component analysis (KICA) and support vector machine (SVM). Industrial and Engineering Chemistry Research 2008, 47(18):6961-6971.
    • (2008) Industrial and Engineering Chemistry Research , vol.47 , Issue.18 , pp. 6961-6971
    • Zhang, Y.1
  • 56
    • 2942652396 scopus 로고    scopus 로고
    • Feature selection for modular GA-based classification
    • Zhu F., Guan S. Feature selection for modular GA-based classification. Applied Soft Computing Journal 2004, 4(4):381-393.
    • (2004) Applied Soft Computing Journal , vol.4 , Issue.4 , pp. 381-393
    • Zhu, F.1    Guan, S.2
  • 57
    • 33746363218 scopus 로고    scopus 로고
    • Selecting features for nuclear transients classification by means of genetic algorithms
    • Zio E., Balardi P., Pedroni N. Selecting features for nuclear transients classification by means of genetic algorithms. IEEE Transactions on Nuclear Science 2006, 53(3):1479-1493.
    • (2006) IEEE Transactions on Nuclear Science , vol.53 , Issue.3 , pp. 1479-1493
    • Zio, E.1    Balardi, P.2    Pedroni, N.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.