메뉴 건너뛰기




Volumn 6, Issue 4, 2015, Pages 1283-1291

A short-term wind power forecasting approach with adjustment of numerical weather prediction input by data mining

Author keywords

Artificial neural network; data adjustment; feature selection; numerical weather prediction; wind power forecast error

Indexed keywords

DATA MINING; ERRORS; FORECASTING; WIND POWER;

EID: 84960799300     PISSN: 19493029     EISSN: None     Source Type: Journal    
DOI: 10.1109/TSTE.2015.2429586     Document Type: Article
Times cited : (186)

References (35)
  • 2
    • 84927165408 scopus 로고    scopus 로고
    • Wind power forecasting error based dispatch method for wind farm cluster
    • N. Chen, Q. Wang, L. Yao, L. Zhu, Y. Tang, and F. Wu, "Wind power forecasting error based dispatch method for wind farm cluster," J. Mod. Power Syst. Clean Energy, vol. 1, no. 1, pp. 65-72, 2013.
    • (2013) J. Mod. Power Syst. Clean Energy , vol.1 , Issue.1 , pp. 65-72
    • Chen, N.1    Wang, Q.2    Yao, L.3    Zhu, L.4    Tang, Y.5    Wu, F.6
  • 4
    • 84959537896 scopus 로고    scopus 로고
    • Uncertainty management in power system operation
    • Mar.
    • C. Peng, S. Lei, Y. Hou, and F. Wu, "Uncertainty management in power system operation," CSEE J. Power Energy Syst., vol. 1, no. 1, pp. 28-35, Mar. 2015.
    • (2015) CSEE J. Power Energy Syst. , vol.1 , Issue.1 , pp. 28-35
    • Peng, C.1    Lei, S.2    Hou, Y.3    Wu, F.4
  • 6
    • 84857377272 scopus 로고    scopus 로고
    • A sensitivity study of the WRF model in wind simulation for an area of high wind energy
    • D. Carvalho, A. Rocha, M. Gómez-Gesteira, and C. Santos, "A sensitivity study of the WRF model in wind simulation for an area of high wind energy," Environ. Model. Softw., vol. 33, pp. 23-34, 2012.
    • (2012) Environ. Model. Softw. , vol.33 , pp. 23-34
    • Carvalho, D.1    Rocha, A.2    Gómez-Gesteira, M.3    Santos, C.4
  • 7
    • 60049084645 scopus 로고    scopus 로고
    • A review on the forecasting of wind speed and generated power
    • M. Lei, L. Shiyan, J. Chuanwen, L. Hongling, and Z. Yan, "A review on the forecasting of wind speed and generated power," Renew. Sustain. Energy Rev., vol. 13, no. 4, pp. 915-920, 2009.
    • (2009) Renew. Sustain. Energy Rev. , vol.13 , Issue.4 , pp. 915-920
    • Lei, M.1    Shiyan, L.2    Chuanwen, J.3    Hongling, L.4    Yan, Z.5
  • 8
    • 84886439974 scopus 로고    scopus 로고
    • Closure to discussion on 'a method for shortterm wind power prediction with multiple observation points'
    • May
    • M. Khalid and A. Savkin, "Closure to discussion on 'a method for shortterm wind power prediction with multiple observation points'," IEEE Trans. Power Syst., vol. 28, no. 2, pp. 1898-1899, May 2013.
    • (2013) IEEE Trans. Power Syst. , vol.28 , Issue.2 , pp. 1898-1899
    • Khalid, M.1    Savkin, A.2
  • 9
    • 84892622679 scopus 로고    scopus 로고
    • Probabilistic forecasts of wind power generation accounting for geographically dispersed information
    • Jan.
    • J. Tastu, P. Pinson, P.-J. Trombe, and H. Madsen, "Probabilistic forecasts of wind power generation accounting for geographically dispersed information," IEEE Trans. Smart Grid, vol. 5, no. 1, pp. 480-489, Jan. 2014.
    • (2014) IEEE Trans. Smart Grid , vol.5 , Issue.1 , pp. 480-489
    • Tastu, J.1    Pinson, P.2    Trombe, P.-J.3    Madsen, H.4
  • 10
    • 84899566603 scopus 로고    scopus 로고
    • Probabilistic forecasting of wind power generation using extreme learning machine
    • May
    • C. Wan, Z. Xu, P. Pinson, Z. Y. Dong, and K. P. Wong, "Probabilistic forecasting of wind power generation using extreme learning machine," IEEE Trans. Power Syst., vol. 29, no. 3, pp. 1033-1044, May 2014.
    • (2014) IEEE Trans. Power Syst. , vol.29 , Issue.3 , pp. 1033-1044
    • Wan, C.1    Xu, Z.2    Pinson, P.3    Dong, Z.Y.4    Wong, K.P.5
  • 11
    • 84859371312 scopus 로고    scopus 로고
    • A general probabilistic forecasting framework for offshore wind power fluctuations
    • P.-J. Trombe, P. Pinson, and H.Madsen, "A general probabilistic forecasting framework for offshore wind power fluctuations," Energies, vol. 5, no. 3, pp. 621-657, 2012.
    • (2012) Energies , vol.5 , Issue.3 , pp. 621-657
    • Trombe, P.-J.1    Pinson, P.2    Madsen, H.3
  • 13
    • 77649295323 scopus 로고    scopus 로고
    • Wind power forecasting and error analysis using the autoregressive moving average modeling
    • Jul.
    • S. Rajagopalan and S. Santoso, "Wind power forecasting and error analysis using the autoregressive moving average modeling," in Proc. IEEE Power Energy Soc. Gen. Meeting (PES'09), Jul. 2009, pp. 1-6.
    • (2009) Proc. IEEE Power Energy Soc. Gen. Meeting (PES'09) , pp. 1-6
    • Rajagopalan, S.1    Santoso, S.2
  • 14
    • 77951665319 scopus 로고    scopus 로고
    • Arima-based time series model of stochastic wind power generation
    • May
    • P. Chen, T. Pedersen, B. Bak-Jensen, and Z. Chen, "Arima-based time series model of stochastic wind power generation," IEEE Trans. Power Syst., vol. 25, no. 2, pp. 667-676, May 2010.
    • (2010) IEEE Trans. Power Syst. , vol.25 , Issue.2 , pp. 667-676
    • Chen, P.1    Pedersen, T.2    Bak-Jensen, B.3    Chen, Z.4
  • 15
    • 84897656346 scopus 로고    scopus 로고
    • Wind power forecasts using Gaussian processes and numerical weather prediction
    • Mar.
    • N. Chen, Z. Qian, I. Nabney, and X. Meng, "Wind power forecasts using gaussian processes and numerical weather prediction," IEEE Trans. Power Syst., vol. 29, no. 2, pp. 656-665, Mar. 2014.
    • (2014) IEEE Trans. Power Syst. , vol.29 , Issue.2 , pp. 656-665
    • Chen, N.1    Qian, Z.2    Nabney, I.3    Meng, X.4
  • 16
    • 49749138923 scopus 로고    scopus 로고
    • Improvements in wind speed forecasts for wind power prediction purposes using kalman filtering
    • P. Louka et al., "Improvements in wind speed forecasts for wind power prediction purposes using kalman filtering," J. Wind Eng. Ind. Aerodyn., vol. 96, no. 12, pp. 2348-2362, 2008.
    • (2008) J. Wind Eng. Ind. Aerodyn. , vol.96 , Issue.12 , pp. 2348-2362
    • Louka, P.1
  • 17
    • 84893641491 scopus 로고    scopus 로고
    • Short-term load and wind power forecasting using neural network-based prediction intervals
    • Feb.
    • H. Quan, D. Srinivasan, and A. Khosravi, "Short-term load and wind power forecasting using neural network-based prediction intervals," IEEE Trans. Neural Netw. Learn. Syst., vol. 25, no. 2, pp. 303-315, Feb. 2014.
    • (2014) IEEE Trans. Neural Netw. Learn. Syst. , vol.25 , Issue.2 , pp. 303-315
    • Quan, H.1    Srinivasan, D.2    Khosravi, A.3
  • 18
    • 84859094795 scopus 로고    scopus 로고
    • Short-term wind power prediction using a wavelet support vector machine
    • Apr.
    • J. Zeng and W. Qiao, "Short-term wind power prediction using a wavelet support vector machine," IEEE Trans. Sustain. Energy, vol. 3, no. 2, pp. 255-264, Apr. 2012.
    • (2012) IEEE Trans. Sustain. Energy , vol.3 , Issue.2 , pp. 255-264
    • Zeng, J.1    Qiao, W.2
  • 20
    • 79960324052 scopus 로고    scopus 로고
    • Short-term wind power prediction based on wavelet transform-support vector machine and statistic characteristics analysis
    • May
    • J. Shi, Y. Liu, Y. Yang, andW.-J. Lee, "Short-term wind power prediction based on wavelet transform-support vector machine and statistic characteristics analysis," in Proc. IEEE Ind. Commer. Power Syst. Tech. Conf. (ICPS), May 2011, pp. 1-7.
    • (2011) Proc. IEEE Ind. Commer. Power Syst. Tech. Conf. (ICPS) , pp. 1-7
    • Shi, J.1    Liu, Y.2    Yang, Y.3    Lee, W.-J.4
  • 21
    • 79959557168 scopus 로고    scopus 로고
    • Wind power prediction by a new forecast engine composed of modified hybrid neural network and enhanced particle swarm optimization
    • Jul.
    • N. Amjady, F. Keynia, and H. Zareipour, "Wind power prediction by a new forecast engine composed of modified hybrid neural network and enhanced particle swarm optimization," IEEE Trans. Sustain. Energy, vol. 2, no. 3, pp. 265-276, Jul. 2011.
    • (2011) IEEE Trans. Sustain. Energy , vol.2 , Issue.3 , pp. 265-276
    • Amjady, N.1    Keynia, F.2    Zareipour, H.3
  • 22
    • 67349211771 scopus 로고    scopus 로고
    • Forecasting the wind generation using a two-stage network based on meteorological information
    • Jun.
    • S. Fan, J. Liao, R. Yokoyama, L. Chen, and W.-J. Lee, "Forecasting the wind generation using a two-stage network based on meteorological information," IEEE Trans. Energy Convers., vol. 24, no. 2, pp. 474-482, Jun. 2009.
    • (2009) IEEE Trans. Energy Convers. , vol.24 , Issue.2 , pp. 474-482
    • Fan, S.1    Liao, J.2    Yokoyama, R.3    Chen, L.4    Lee, W.-J.5
  • 23
    • 43049128559 scopus 로고    scopus 로고
    • A review on the young history of the wind power shortterm prediction
    • A. Costa et al., "A review on the young history of the wind power shortterm prediction," Renew. Sustain. Energy Rev., vol. 12, no. 6, pp. 1725-1744, 2008.
    • (2008) Renew. Sustain. Energy Rev. , vol.12 , Issue.6 , pp. 1725-1744
    • Costa, A.1
  • 24
    • 84889075437 scopus 로고    scopus 로고
    • Short-term wind power forecasting based on numerical weather prediction adjustment
    • Jul.
    • G. Qu, J. Mei, and D. He, "Short-term wind power forecasting based on numerical weather prediction adjustment," in Proc. 11th IEEE Int. Conf. Ind. Informat. (INDIN), Jul. 2013, pp. 453-457.
    • (2013) Proc. 11th IEEE Int. Conf. Ind. Informat. (INDIN) , pp. 453-457
    • Qu, G.1    Mei, J.2    He, D.3
  • 25
    • 33947303690 scopus 로고    scopus 로고
    • An advanced statistical method for wind power forecasting
    • Feb.
    • G. Sideratos and N. Hatziargyriou, "An advanced statistical method for wind power forecasting," IEEE Trans. Power Syst., vol. 22, no. 1, pp. 258-265, Feb. 2007.
    • (2007) IEEE Trans. Power Syst. , vol.22 , Issue.1 , pp. 258-265
    • Sideratos, G.1    Hatziargyriou, N.2
  • 27
    • 84876235301 scopus 로고    scopus 로고
    • A widely applicable Bayesian information criterion
    • Mar.
    • S. Watanabe, "A widely applicable bayesian information criterion," J. Mach. Learn. Res., vol. 14, no. 1, pp. 867-897, Mar. 2013.
    • (2013) J. Mach. Learn. Res. , vol.14 , Issue.1 , pp. 867-897
    • Watanabe, S.1
  • 28
    • 84897613657 scopus 로고    scopus 로고
    • Global energy forecasting competition 2012
    • T. Hong, P. Pinson, and S. Fan, "Global energy forecasting competition 2012," Int. J. Forecast., vol. 30, no. 2, pp. 357-363, 2014.
    • (2014) Int. J. Forecast. , vol.30 , Issue.2 , pp. 357-363
    • Hong, T.1    Pinson, P.2    Fan, S.3
  • 29
    • 84933053784 scopus 로고    scopus 로고
    • Weather station selection for electric load forecasting
    • T. Hong, P. Wang, and L. White, "Weather station selection for electric load forecasting," Int. J. Forecast., vol. 31, no. 2, pp. 286-295, 2015.
    • (2015) Int. J. Forecast. , vol.31 , Issue.2 , pp. 286-295
    • Hong, T.1    Wang, P.2    White, L.3
  • 30
    • 0001820920 scopus 로고    scopus 로고
    • X-means: Extending k-means with efficient estimation of the number of clusters
    • ICML
    • D. Pelleg et al., "X-means: Extending k-means with efficient estimation of the number of clusters," in Proc. Int. Conf.Mach. Learn. (ICML), 2000, pp. 727-734.
    • (2000) Proc. Int. Conf.Mach. Learn. , pp. 727-734
    • Pelleg, D.1
  • 31
    • 60149084412 scopus 로고    scopus 로고
    • Day-ahead price forecasting of electricity markets by mutual information technique and cascaded neuroevolutionary algorithm
    • Feb.
    • N. Amjady and F. Keynia, "Day-ahead price forecasting of electricity markets by mutual information technique and cascaded neuroevolutionary algorithm," IEEE Trans. Power Syst., vol. 24, no. 1, pp. 306-318, Feb. 2009.
    • (2009) IEEE Trans. Power Syst. , vol.24 , Issue.1 , pp. 306-318
    • Amjady, N.1    Keynia, F.2
  • 32
    • 0032593004 scopus 로고    scopus 로고
    • Short-term load forecasting with local ann predictors
    • Aug.
    • I. Drezga and S. Rahman, "Short-term load forecasting with local ann predictors," IEEE Trans. Power Syst., vol. 14, no. 3, pp. 844-850, Aug. 1999.
    • (1999) IEEE Trans. Power Syst. , vol.14 , Issue.3 , pp. 844-850
    • Drezga, I.1    Rahman, S.2
  • 33
    • 0032204310 scopus 로고    scopus 로고
    • Input variable selection for ann-based shortterm load forecasting
    • Nov.
    • I. Drezga and S. Rahman, "Input variable selection for ann-based shortterm load forecasting," IEEE Trans. Power Syst., vol. 13, no. 4, pp. 1238-1244, Nov. 1998.
    • (1998) IEEE Trans. Power Syst. , vol.13 , Issue.4 , pp. 1238-1244
    • Drezga, I.1    Rahman, S.2
  • 34
    • 84930685452 scopus 로고    scopus 로고
    • Adaptive electric load forecaster
    • Apr.
    • M. Dong and C. Lou, "Adaptive electric load forecaster," Tsinghua Sci. Technol., vol. 20, no. 2, pp. 164-174, Apr. 2015.
    • (2015) Tsinghua Sci. Technol. , vol.20 , Issue.2 , pp. 164-174
    • Dong, M.1    Lou, C.2
  • 35
    • 2942701493 scopus 로고    scopus 로고
    • Ranking a random feature for variable and feature selection
    • Mar.
    • H. Stoppiglia, G. Dreyfus, R. Dubois, and Y. Oussar, "Ranking a random feature for variable and feature selection," J. Mach. Learn. Res., vol. 3, pp. 1399-1414, Mar. 2003.
    • (2003) J. Mach. Learn. Res. , vol.3 , pp. 1399-1414
    • Stoppiglia, H.1    Dreyfus, G.2    Dubois, R.3    Oussar, Y.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.