-
1
-
-
0000501656
-
Information theory and an extension of the maximum likelihood principle
-
Petrov, B.N., Csaki, F. (eds.), Akademiai Kiado, Budapest
-
Akaike, H.: Information theory and an extension of the maximum likelihood principle. In: Petrov, B.N., Csaki, F. (eds.) Proceedings of the Second International Symposium on Information Theory, pp. 267–281. Akademiai Kiado, Budapest (1973)
-
(1973)
Proceedings of the Second International Symposium on Information Theory
, pp. 267-281
-
-
Akaike, H.1
-
2
-
-
77956264822
-
Predictive likelihood for Bayesian model selection and averaging
-
Ando, T., Tsay, R.: Predictive likelihood for Bayesian model selection and averaging. Int. J. Forecast. 26, 744–763 (2010)
-
(2010)
Int. J. Forecast.
, vol.26
, pp. 744-763
-
-
Ando, T.1
Tsay, R.2
-
3
-
-
77956649096
-
A survey of cross-validation procedures for model selection
-
Arolot, S., Celisse, A.: A survey of cross-validation procedures for model selection. Stat. Surv. 4, 40–79 (2010)
-
(2010)
Stat. Surv.
, vol.4
, pp. 40-79
-
-
Arolot, S.1
Celisse, A.2
-
5
-
-
0000354976
-
A comparative study of ordinary cross-validation, v-fold cross-validation and the repeated learning-testing methods
-
Burman, P.: A comparative study of ordinary cross-validation, v-fold cross-validation and the repeated learning-testing methods. Bio-metrika 76, 503–514 (1989)
-
(1989)
Bio-Metrika
, vol.76
, pp. 503-514
-
-
Burman, P.1
-
6
-
-
84859838775
-
Case-deletion importance sampling estimators: Central limit theorems and related results
-
Epifani, I., MacEachern, S.N., Peruggia, M.: Case-deletion importance sampling estimators: central limit theorems and related results. Electron. J. Stat. 2, 774–806 (2008)
-
(2008)
Electron. J. Stat.
, vol.2
, pp. 774-806
-
-
Epifani, I.1
Maceachern, S.N.2
Peruggia, M.3
-
8
-
-
0001526195
-
A predictive approach to model selection
-
Geisser, S., Eddy, W.: A predictive approach to model selection. J. Am. Stat. Assoc. 74, 153–160 (1979)
-
(1979)
J. Am. Stat. Assoc.
, vol.74
, pp. 153-160
-
-
Geisser, S.1
Eddy, W.2
-
9
-
-
0001803816
-
Model determination using sampling-based methods
-
Gilks, W.R., Richardson, S., Spiegelhalter, D.J. (eds.), Chapman and Hall, London
-
Gelfand, A.E.: Model determination using sampling-based methods. In: Gilks, W.R., Richardson, S., Spiegelhalter, D.J. (eds.) Markov Chain Monte Carlo in Practice, pp. 145–162. Chapman and Hall, London (1996)
-
(1996)
Markov Chain Monte Carlo in Practice
, pp. 145-162
-
-
Gelfand, A.E.1
-
10
-
-
0000079228
-
Model determination using predictive distributions with implementation via sampling-based methods
-
Bernardo, J.M., Berger, J.O., Dawid, A.P., Smith, A.F.M. (eds.), 4th edn, Oxford University Press, Oxford
-
Gelfand, A.E., Dey, D.K., Chang, H.: Model determination using predictive distributions with implementation via sampling-based methods. In: Bernardo, J.M., Berger, J.O., Dawid, A.P., Smith, A.F.M. (eds.) Bayesian Statistics, 4th edn, pp. 147–167. Oxford University Press, Oxford (1992)
-
(1992)
Bayesian Statistics
, pp. 147-167
-
-
Gelfand, A.E.1
Dey, D.K.2
Chang, H.3
-
11
-
-
85053970271
-
-
3rd edn. CRC Press, London
-
Gelman, A., Carlin, J.B., Stern, H.S., Dunson, D.B., Vehtari, A., Rubin, D.B.: Bayesian Data Analysis, 3rd edn. CRC Press, London (2013)
-
(2013)
Bayesian Data Analysis
-
-
Gelman, A.1
Carlin, J.B.2
Stern, H.S.3
Dunson, D.B.4
Vehtari, A.5
Rubin, D.B.6
-
13
-
-
84916213666
-
Understanding predictive information criteria for Bayesian models
-
Gelman, A., Hwang, J., Vehtari, A.: Understanding predictive information criteria for Bayesian models. Stat. Comput. 24, 997–1016 (2014)
-
(2014)
Stat. Comput.
, vol.24
, pp. 997-1016
-
-
Gelman, A.1
Hwang, J.2
Vehtari, A.3
-
14
-
-
33947274775
-
Strictly proper scoring rules, prediction, and estimation
-
Gneiting, T., Raftery, A.E.: Strictly proper scoring rules, prediction, and estimation. J. Am. Stat. Assoc. 102, 359–378 (2007)
-
(2007)
J. Am. Stat. Assoc.
, vol.102
, pp. 359-378
-
-
Gneiting, T.1
Raftery, A.E.2
-
15
-
-
0001259111
-
Bayesian model averaging
-
Hoeting, J., Madigan, D., Raftery, A.E., Volinsky, C.: Bayesian model averaging. Stat. Sci. 14, 382–417 (1999)
-
(1999)
Stat. Sci.
, vol.14
, pp. 382-417
-
-
Hoeting, J.1
Madigan, D.2
Raftery, A.E.3
Volinsky, C.4
-
16
-
-
84901687683
-
The no-U-turn sampler: Adaptively setting path lengths in Hamiltonian Monte Carlo
-
Hoffman, M.D., Gelman, A.: The no-U-turn sampler: adaptively setting path lengths in Hamiltonian Monte Carlo. J. Mach. Learn. Res. 15, 1593–1623 (2014)
-
(2014)
J. Mach. Learn. Res.
, vol.15
, pp. 1593-1623
-
-
Hoffman, M.D.1
Gelman, A.2
-
17
-
-
46849112625
-
Truncated importance sampling
-
Ionides, E.L.: Truncated importance sampling. J. Comput. Graph. Stat. 17, 295–311 (2008)
-
(2008)
J. Comput. Graph. Stat.
, vol.17
, pp. 295-311
-
-
Ionides, E.L.1
-
18
-
-
63149119676
-
Testing the assumptions behind importance sampling
-
Koopman, S.J., Shephard, N., Creal, D.: Testing the assumptions behind importance sampling. J. Econom. 149, 2–11 (2009)
-
(2009)
J. Econom.
, vol.149
, pp. 2-11
-
-
Koopman, S.J.1
Shephard, N.2
Creal, D.3
-
19
-
-
0031500277
-
On the variability of case-deletion importance sampling weights in the Bayesian linear model
-
Peruggia, M.: On the variability of case-deletion importance sampling weights in the Bayesian linear model. J. Am. Stat. Assoc. 92, 199– 207 (1997)
-
(1997)
J. Am. Stat. Assoc.
, vol.92
, pp. 199-207
-
-
Peruggia, M.1
-
20
-
-
84964030922
-
Comparison of Bayesian predictive methods for model selection
-
In press
-
Piironen, J., Vehtari, A.: Comparison of Bayesian predictive methods for model selection. Stat. Comput. (2016) (In press). http://link. springer.com/article/10.1007/s11222-016-9649-y
-
(2016)
Stat. Comput.
-
-
Piironen, J.1
Vehtari, A.2
-
21
-
-
45849088346
-
Penalized loss functions for Bayesian model comparison
-
Plummer, M.: Penalized loss functions for Bayesian model comparison. Biostatistics 9, 523–539 (2008)
-
(2008)
Biostatistics
, vol.9
, pp. 523-539
-
-
Plummer, M.1
-
22
-
-
32444450670
-
-
Vienna, Austria
-
R Core Team: R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria (2016). https://www.R-project.org/
-
(2016)
R Foundation for Statistical Computing
-
-
-
23
-
-
0000656694
-
Estimation in parallel randomized experiments
-
Rubin, D.B.: Estimation in parallel randomized experiments. J. Educ. Stat. 6, 377–401 (1981)
-
(1981)
J. Educ. Stat.
, vol.6
, pp. 377-401
-
-
Rubin, D.B.1
-
24
-
-
0036435040
-
Bayesian measures of model complexity and fit
-
Spiegelhalter, D.J., Best, N.G., Carlin, B.P., van der Linde, A.: Bayesian measures of model complexity and fit. J. R. Stat. Soc. B 64, 583–639 (2002)
-
(2002)
J. R. Stat. Soc. B
, vol.64
, pp. 583-639
-
-
Spiegelhalter, D.J.1
Best, N.G.2
Carlin, B.P.3
van der Linde, A.4
-
25
-
-
0003470083
-
-
MRC Biostatistics Unit, Cambridge, England
-
Spiegelhalter, D., Thomas, A., Best, N., Gilks, W., Lunn, D.: BUGS: Bayesian inference using Gibbs sampling. MRC Biostatistics Unit, Cambridge, England (1994, 2003). http://www.mrc-bsu.cam.ac. uk/bugs/
-
(2003)
BUGS: Bayesian Inference Using Gibbs Sampling
-
-
Spiegelhalter, D.1
Thomas, A.2
Best, N.3
Gilks, W.4
Lunn, D.5
-
26
-
-
85058382931
-
-
Stan Development Team: The Stan C++ Library, version 2.10.0 (2016a)
-
Stan Development Team: The Stan C++ Library, version 2.10.0 (2016a). http://mc-stan.org/
-
-
-
-
27
-
-
85058408882
-
-
RStan: the R interface to Stan, version 2.10.1
-
Stan Development Team: RStan: the R interface to Stan, version 2.10.1 (2016b). http://mc-stan.org/interfaces/rstan.html
-
(2016)
-
-
-
28
-
-
0000859675
-
An asymptotic equivalence of choice of model cross-validation and Akaike’s criterion
-
Stone, M.: An asymptotic equivalence of choice of model cross-validation and Akaike’s criterion. J. R. Stat. Soc. B 36, 44–47 (1977)
-
(1977)
J. R. Stat. Soc. B
, vol.36
, pp. 44-47
-
-
Stone, M.1
-
29
-
-
15544368884
-
DIC in variable selection
-
van der Linde, A.: DIC in variable selection. Stat. Neerl. 1, 45–56 (2005)
-
(2005)
Stat. Neerl.
, vol.1
, pp. 45-56
-
-
van der Linde, A.1
-
32
-
-
84988932233
-
Bayesian leave-one-out cross-validation approximations for Gaussian latent variable models
-
Vehtari, A., Mononen, T., Tolvanen, V., Sivula, T., Winther, O.: Bayesian leave-one-out cross-validation approximations for Gaussian latent variable models. J. Mach. Learn. Res. 17, 1–38 (2016b)
-
(2016)
J. Mach. Learn. Res
, vol.17
, pp. 1-38
-
-
Vehtari, A.1
Mononen, T.2
Tolvanen, V.3
Sivula, T.4
Winther, O.5
-
33
-
-
0036781790
-
Bayesian model assessment and comparison using cross-validation predictive densities
-
Vehtari, A., Lampinen, J.: Bayesian model assessment and comparison using cross-validation predictive densities. Neural Comput. 14, 2439–2468 (2002)
-
(2002)
Neural Comput
, vol.14
, pp. 2439-2468
-
-
Vehtari, A.1
Lampinen, J.2
-
34
-
-
84874387472
-
A survey of Bayesian predictive methods for model assessment, selection and comparison
-
Vehtari, A., Ojanen, J.: A survey of Bayesian predictive methods for model assessment, selection and comparison. Stat. Surv. 6, 142– 228 (2012)
-
(2012)
Stat. Surv.
, vol.6
, pp. 142-228
-
-
Vehtari, A.1
Ojanen, J.2
-
35
-
-
84901481264
-
Laplace approximation for logistic Gaussian process density estimation and regression
-
Vehtari, A., Riihimäki, J.: Laplace approximation for logistic Gaussian process density estimation and regression. Bayesian Anal. 9, 425– 448 (2014)
-
(2014)
Bayesian Anal
, vol.9
, pp. 425-448
-
-
Vehtari, A.1
Riihimäki, J.2
-
36
-
-
79551500649
-
Asymptotic equivalence of Bayes cross validation and widely applicable information criterion in singular learning theory
-
Watanabe, S.: Asymptotic equivalence of Bayes cross validation and widely applicable information criterion in singular learning theory. J. Mach. Learn. Res. 11, 3571–3594 (2010)
-
(2010)
J. Mach. Learn. Res.
, vol.11
, pp. 3571-3594
-
-
Watanabe, S.1
-
37
-
-
69249150497
-
A new and efficient estimation method for the generalized Pareto distribution
-
Zhang, J., Stephens, M.A.: A new and efficient estimation method for the generalized Pareto distribution. Technometrics 51, 316–325 (2009)
-
(2009)
Technometrics
, vol.51
, pp. 316-325
-
-
Zhang, J.1
Stephens, M.A.2
|