메뉴 건너뛰기




Volumn 15, Issue , 2011, Pages 416-424

Approximate inference for the loss-calibrated Bayesian

Author keywords

[No Author keywords available]

Indexed keywords

APPROXIMATE INFERENCE; BAYESIAN DECISION THEORY; DECISION TASK; GAUSSIAN PROCESS CLASSIFICATIONS; IMPROVE-A; RESEARCH DIRECTIONS;

EID: 84862277158     PISSN: 15324435     EISSN: 15337928     Source Type: Journal    
DOI: None     Document Type: Conference Paper
Times cited : (56)

References (22)
  • 5
    • 24344473211 scopus 로고
    • Proper measures of discrepancy, uncertainty and dependence with applications to predictive experimental designs
    • University College London. (revised in 1998)
    • A. P. Dawid. Proper measures of discrepancy, uncertainty and dependence with applications to predictive experimental designs. Technical Report 139, Department of Statistical Science at University College London, 1994. (revised in 1998).
    • (1994) Technical Report 139, Department of Statistical Science
    • Dawid, A.P.1
  • 7
    • 0031268341 scopus 로고    scopus 로고
    • Factorial hidden Markov models
    • Z. Ghahramani and M. I. Jordan. Factorial hidden Markov models. Machine Learning, 29:245-275, 1997.
    • (1997) Machine Learning , vol.29 , pp. 245-275
    • Ghahramani, Z.1    Jordan, M.I.2
  • 9
    • 79551660140 scopus 로고    scopus 로고
    • Multitask sparsity via Maximum Entropy Discrimination
    • T. Jebara. Multitask sparsity via Maximum Entropy Discrimination. Journal of Machine Learning Research, 12:75-110, 2011.
    • (2011) Journal of Machine Learning Research , vol.12 , pp. 75-110
    • Jebara, T.1
  • 10
    • 69549111057 scopus 로고    scopus 로고
    • Cutting-plane training of structural SVMs
    • T. Joachims, T. Finley, and C.-N. Yu. Cutting-plane training of structural SVMs. Machine Learning, 77 (1):27-59, 2009.
    • (2009) Machine Learning , vol.77 , Issue.1 , pp. 27-59
    • Joachims, T.1    Finley, T.2    Yu, C.-N.3
  • 11
    • 0033225865 scopus 로고    scopus 로고
    • An introduction to variational methods for graphical models
    • M. I. Jordan, editor. MIT Press, Cambridge
    • M. I. Jordan, Z. Ghahramani, T. S. Jaakkola, and L. K. Saul. An introduction to variational methods for graphical models. In M. I. Jordan, editor, Learning in Graphical Models. MIT Press, Cambridge, 1999.
    • (1999) Learning in Graphical Models
    • Jordan, M.I.1    Ghahramani, Z.2    Jaakkola, T.S.3    Saul, L.K.4
  • 13
    • 79251576558 scopus 로고    scopus 로고
    • MCMC using Hamiltonian dynamics
    • G. J. S. Brooks, A. Gelman and X.-L. Meng, editors. Chapman & Hall / CRC Press
    • R. M. Neal. MCMC using Hamiltonian dynamics. In G. J. S. Brooks, A. Gelman and X.-L. Meng, editors, Handbook of Markov Chain Monte Carlo. Chapman & Hall / CRC Press, 2010.
    • (2010) Handbook of Markov Chain Monte Carlo
    • Neal, R.M.1
  • 21
    • 84883148756 scopus 로고    scopus 로고
    • Empirical risk minimization of graphical model parameters given approximate inference, decoding, and model structure
    • G. Gordon and D. Dunson, editors, Fort Lauderdale, FL, USA, April. Journal of Machine Learning Research
    • V. Stoyanov, J. Eisner, and A. Ropson. Empirical risk minimization of graphical model parameters given approximate inference, decoding, and model structure. In G. Gordon and D. Dunson, editors, Proceedings of the Fourteenth International Conference on Artificial Intelligence and Statistics, volume 15, Fort Lauderdale, FL, USA, April 2011. Journal of Machine Learning Research.
    • (2011) Proceedings of the Fourteenth International Conference on Artificial Intelligence and Statistics , vol.15
    • Stoyanov, V.1    Eisner, J.2    Ropson, A.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.