메뉴 건너뛰기




Volumn 2017-December, Issue , 2017, Pages 3392-3402

Deep sets

Author keywords

[No Author keywords available]

Indexed keywords

LEARNING SYSTEMS; NETWORK ARCHITECTURE;

EID: 85046887805     PISSN: 10495258     EISSN: None     Source Type: Conference Proceeding    
DOI: None     Document Type: Conference Paper
Times cited : (1745)

References (55)
  • 2
    • 84960809979 scopus 로고    scopus 로고
    • Exploration and evaluation of Ar, Mpca and Kl anomaly detection techniques to embankment dam piezometer data
    • I. Jung, M. Berges, J. Garrett, and B. Poczos. Exploration and evaluation of ar, mpca and kl anomaly detection techniques to embankment dam piezometer data. Advanced Engineering Informatics, 2015. pages 1
    • (2015) Advanced Engineering Informatics , pp. 1
    • Jung, I.1    Berges, M.2    Garrett, J.3    Poczos, B.4
  • 20
    • 84960469741 scopus 로고    scopus 로고
    • Deeppano: Deep panoramic representation for 3-d shape recognition
    • pages 3, 26, 27
    • Baoguang Shi, Song Bai, Zhichao Zhou, and Xiang Bai. Deeppano: Deep panoramic representation for 3-d shape recognition. IEEE Signal Processing Letters, 22(12):2339-2343, 2015. pages 3, 26, 27
    • (2015) IEEE Signal Processing Letters , vol.22 , Issue.12 , pp. 2339-2343
    • Shi, B.1    Bai, S.2    Zhou, Z.3    Bai, X.4
  • 23
    • 85018860957 scopus 로고    scopus 로고
    • Learning multiagent communication with backpropagation
    • pages 3
    • Sainbayar Sukhbaatar, Rob Fergus, et al. Learning multiagent communication with backpropagation. In Neural Information Processing Systems, pages 2244-2252, 2016. pages 3
    • (2016) Neural Information Processing Systems , pp. 2244-2252
    • Sukhbaatar, S.1    Fergus, R.2
  • 24
    • 57849102080 scopus 로고    scopus 로고
    • Training invariant support vector Machines using selective sampling
    • Léon Bottou, Olivier Chapelle, Dennis DeCoste, and Jason Weston, editors MIT Press, Cambridge, MA pages 5
    • Gaëlle Loosli, Stéphane Canu, and Léon Bottou. Training invariant support vector machines using selective sampling. In Léon Bottou, Olivier Chapelle, Dennis DeCoste, and Jason Weston, editors, Large Scale Kernel Machines, pages 301-320. MIT Press, Cambridge, MA., 2007. pages 5
    • (2007) Large Scale Kernel Machines , pp. 301-320
    • Loosli, G.1    Canu, S.2    Bottou, L.3
  • 30
    • 0142228450 scopus 로고    scopus 로고
    • A mesh reconstruction algorithm driven by an intrinsic property of a point cloud
    • pages 5
    • Hong-Wei Lin, Chiew-Lan Tai, and Guo-Jin Wang. A mesh reconstruction algorithm driven by an intrinsic property of a point cloud. Computer-Aided Design, 36(1):1-9, 2004. pages 5
    • (2004) Computer-Aided Design , vol.36 , Issue.1 , pp. 1-9
    • Lin, H.-W.1    Tai, C.-L.2    Wang, G.-J.3
  • 35
    • 84896775132 scopus 로고    scopus 로고
    • Redmapper II: X-ray and sz performance benchmarks for the sdss catalog
    • pages 5, 25
    • Eduardo Rozo and Eli S Rykoff. Redmapper ii: X-ray and sz performance benchmarks for the sdss catalog. The Astrophysical Journal, 783(2):80, 2014. pages 5, 25
    • (2014) The Astrophysical Journal , vol.783 , Issue.2 , pp. 80
    • Rozo, E.1    Rykoff, E.S.2
  • 36
    • 85047018569 scopus 로고    scopus 로고
    • Bayesian sets
    • pages 6, 7, 20, 21, 22
    • Zoubin Ghahramani and Katherine A Heller. Bayesian sets. In NIPS, Volume 2, pages 22-23, 2005. pages 6, 7, 20, 21, 22
    • (2005) NIPS , vol.2 , pp. 22-23
    • Ghahramani, Z.1    Heller, K.A.2
  • 37
    • 84898948585 scopus 로고    scopus 로고
    • Max-margin Markov networks
    • S. Thrun, L. Saul, and B. Schölkopf, editors Cambridge, MA MIT Press. pages 6
    • B. Taskar, C. Guestrin, and D. Koller. Max-margin Markov networks. In S. Thrun, L. Saul, and B. Schölkopf, editors, Advances in Neural Information Processing Systems 16, pages 25-32, Cambridge, MA, 2004. MIT Press. pages 6
    • (2004) Advances in Neural Information Processing Systems , vol.16 , pp. 25-32
    • Taskar, B.1    Guestrin, C.2    Koller, D.3
  • 38
    • 0034118493 scopus 로고    scopus 로고
    • Inference of population structure using multilocus genotype data
    • pages 6, 22
    • Jonathan K. Pritchard, Matthew Stephens, and Peter Donnelly. Inference of population structure using multilocus genotype data. Genetics, 155(2):945-959, 2000. ISSN 0016-6731. URL http://www.genetics.org/content/155/2/945. pages 6, 22
    • (2000) Genetics , vol.155 , Issue.2 , pp. 945-959
    • Pritchard, J.K.1    Stephens, M.2    Donnelly, P.3
  • 44
    • 77953202699 scopus 로고    scopus 로고
    • Tagprop: Discriminative metric learning in nearest neighbor models for image auto-annotation
    • IEEE pages 7, 23, 24
    • Matthieu Guillaumin, Thomas Mensink, Jakob Verbeek, and Cordelia Schmid. Tagprop: Discriminative metric learning in nearest neighbor models for image auto-annotation. In Computer Vision, 2009 IEEE 12th International Conference on, pages 309-316. IEEE, 2009. pages 7, 23, 24
    • (2009) Computer Vision, 2009 IEEE 12th International Conference On , pp. 309-316
    • Guillaumin, M.1    Mensink, T.2    Verbeek, J.3    Schmid, C.4
  • 46
    • 31544479806 scopus 로고    scopus 로고
    • Roots and polynomials as homeomorphic spaces
    • pages 13, 15
    • Branko Ćurgus and Vania Mascioni. Roots and polynomials as homeomorphic spaces. Expositiones Mathematicae, 24(1):81-95, 2006. pages 13, 15
    • (2006) Expositiones Mathematicae , vol.24 , Issue.1 , pp. 81-95
    • Ćurgus, B.1    Mascioni, V.2
  • 50
    • 34250122797 scopus 로고
    • Interpolation of scattered data: Distance matrices and conditionally positive definite functions
    • pages 18
    • C. A. Micchelli. Interpolation of scattered data: distance matrices and conditionally positive definite functions. Constructive Approximation, 2:11-22, 1986. pages 18
    • (1986) Constructive Approximation , vol.2 , pp. 11-22
    • Micchelli, C.A.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.