-
1
-
-
84961350900
-
Modeling biological processes for reading comprehension
-
Jonathan Berant, Vivek Srikumar, Pei-Chun Chen, Abby Vander Linden, Brittany Harding, Brad Huang, Peter Clark, and Christopher D Manning. Modeling biological processes for reading comprehension. In EMNLP, 2014.
-
(2014)
EMNLP
-
-
Berant, J.1
Srikumar, V.2
Chen, P.-C.3
Vander Linden, A.4
Harding, B.5
Huang, B.6
Clark, P.7
Manning, C.D.8
-
3
-
-
84965158187
-
A recurrent latent variable model for sequential data
-
Junyoung Chung, Kyle Kastner, Laurent Dinh, Kratarth Goel, Aaron C Courville, and Yoshua Bengio. A recurrent latent variable model for sequential data. In Advances in neural information processing systems, pages 2980-2988, 2015.
-
(2015)
Advances in Neural Information Processing Systems
, pp. 2980-2988
-
-
Chung, J.1
Kastner, K.2
Dinh, L.3
Goel, K.4
Courville, A.C.5
Bengio, Y.6
-
5
-
-
85047003556
-
-
S. M. Ali Eslami, Nicolas Heess, Theophane Weber, Yuval Tassa, Koray Kavukcuoglu, and Geoffrey. E Hinton. Attend, infer, repeat: Fast scene understanding with generative models. arXiv preprint arXiv: 1603.08575, 2016.
-
(2016)
Attend, Infer, Repeat: Fast Scene Understanding with Generative Models
-
-
Ali Eslami, S.M.1
Heess, N.2
Weber, T.3
Tassa, Y.4
Kavukcuoglu, K.5
Hinton, G.E.6
-
6
-
-
0035363672
-
From few to many: Illumination cone models for face recognition under variable lighting and pose
-
A.S. Georghiades, P.N. Belhumeur, and D.J. Kriegman. From few to many: Illumination cone models for face recognition under variable lighting and pose. IEEE Trans. Pattern Anal. Mach. Intelligence, 23(6): 643-660, 2001.
-
(2001)
IEEE Trans. Pattern Anal. Mach. Intelligence
, vol.23
, Issue.6
, pp. 643-660
-
-
Georghiades, A.S.1
Belhumeur, P.N.2
Kriegman, D.J.3
-
7
-
-
85129474417
-
Amortized inference in probabilistic reasoning
-
Samuel Gershman and Noah Goodman. Amortized inference in probabilistic reasoning. In CogSci, 2014.
-
(2014)
CogSci
-
-
Gershman, S.1
Goodman, N.2
-
8
-
-
84937849144
-
Generative adversarial nets
-
Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair, Aaron Courville, and Yoshua Bengio. Generative adversarial nets. In Advances in Neural Information Processing Systems, pages 2672-2680, 2014.
-
(2014)
Advances in Neural Information Processing Systems
, pp. 2672-2680
-
-
Goodfellow, I.1
Pouget-Abadie, J.2
Mirza, M.3
Xu, B.4
Warde-Farley, D.5
Ozair, S.6
Courville, A.7
Bengio, Y.8
-
9
-
-
70049098573
-
Church: A language for generative models
-
ND Goodman, VK Mansinghka, D Roy, K Bonawitz, and JB Tenenbaum. Church: A language for generative models. In Uncertainty in Artificial Intelligence, pages 220-229, 2008.
-
(2008)
Uncertainty in Artificial Intelligence
, pp. 220-229
-
-
Goodman, N.D.1
Mansinghka, V.K.2
Roy, D.3
Bonawitz, K.4
Tenenbaum, J.B.5
-
10
-
-
84983208884
-
Draw: A recurrent neural network for image generation
-
Karol Gregor, Ivo Danihelka, Alex Graves, Danilo Rezende, and Daan Wierstra. Draw: A recurrent neural network for image generation. In Proceedings of the 32nd International Conference on Machine Learning (ICML-15), pages 1462-1471, 2015.
-
(2015)
Proceedings of the 32nd International Conference on Machine Learning (ICML-15)
, pp. 1462-1471
-
-
Gregor, K.1
Danihelka, I.2
Graves, A.3
Rezende, D.4
Wierstra, D.5
-
12
-
-
84954316234
-
Consensus message passing for layered graphical models
-
Varun Jampani, S. M. Ali Eslami, Daniel Tarlow, Pushmeet Kohli, and John Winn. Consensus message passing for layered graphical models. In International Conference on Artificial Intelligence and Statistics, pages 425-433, 2015.
-
(2015)
International Conference on Artificial Intelligence and Statistics
, pp. 425-433
-
-
Jampani, V.1
Ali Eslami, S.M.2
Tarlow, D.3
Kohli, P.4
Winn, J.5
-
14
-
-
85017433100
-
Composing graphical models with neural networks for structured representations and fast inference
-
Matthew Johnson, David K Duvenaud, Alex Wiltschko, Ryan P Adams, and Sandeep R Datta. Composing graphical models with neural networks for structured representations and fast inference. In Advances in Neural Information Processing Systems, pages 2946-2954, 2016.
-
(2016)
Advances in Neural Information Processing Systems
, pp. 2946-2954
-
-
Johnson, M.1
Duvenaud, D.K.2
Wiltschko, A.3
Adams, R.P.4
Datta, S.R.5
-
15
-
-
85017433100
-
Composing graphical models with neural networks for structured representations and fast inference
-
Matthew J. Johnson, David K. Duvenaud, Alex B. Wiltschko, Sandeep R. Datta, and Ryan P. Adams. Composing graphical models with neural networks for structured representations and fast inference. In Advances in Neural Information Processing Systems, 2016.
-
(2016)
Advances in Neural Information Processing Systems
-
-
Johnson, M.J.1
Duvenaud, D.K.2
Wiltschko, A.B.3
Datta, S.R.4
Adams, R.P.5
-
16
-
-
85083951076
-
Adam: A method for stochastic optimization
-
Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization. CoRR, abs/1412.6980, 2014. URL http://arxiv.org/abs/1412.6980.
-
(2014)
CoRR
-
-
Kingma, D.P.1
Ba, J.2
-
18
-
-
84930643107
-
Semi-supervised learning with deep generative models
-
Diederik P Kingma, Shakir Mohamed, Danilo Jimenez Rezende, and Max Welling. Semi-supervised learning with deep generative models. In Advances in Neural Information Processing Systems, pages 3581-3589, 2014.
-
(2014)
Advances in Neural Information Processing Systems
, pp. 3581-3589
-
-
Kingma, D.P.1
Mohamed, S.2
Rezende, D.J.3
Welling, M.4
-
20
-
-
84959185016
-
Picture: A probabilistic programming language for scene perception
-
Tejas D Kulkarni, Pushmeet Kohli, Joshua B Tenenbaum, and Vikash Mansinghka. Picture: A probabilistic programming language for scene perception. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pages 4390-4399, 2015.
-
(2015)
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
, pp. 4390-4399
-
-
Kulkarni, T.D.1
Kohli, P.2
Tenenbaum, J.B.3
Mansinghka, V.4
-
21
-
-
84965156877
-
Deep convolutional inverse graphics network
-
Tejas D Kulkarni, William F Whitney, Pushmeet Kohli, and Josh Tenenbaum. Deep convolutional inverse graphics network. In Advances in Neural Information Processing Systems, pages 2530-2538, 2015.
-
(2015)
Advances in Neural Information Processing Systems
, pp. 2530-2538
-
-
Kulkarni, T.D.1
Whitney, W.F.2
Kohli, P.3
Tenenbaum, J.4
-
26
-
-
85047006041
-
-
Accessed: 2017-11-4
-
PyTorch. PyTorch. http://pytorch.org/, 2017. Accessed: 2017-11-4.
-
(2017)
PyTorch
-
-
-
27
-
-
84965136229
-
Semi-supervised learning with ladder networks
-
A. Rasmus, H. Valpola, M. Honkala, M. Berglund, and Raiko. T. Semi-supervised learning with ladder networks. In Advances in Neural Information Processing Systems, pages 3532-3540, 2015.
-
(2015)
Advances in Neural Information Processing Systems
, pp. 3532-3540
-
-
Rasmus, A.1
Valpola, H.2
Honkala, M.3
Berglund, M.4
Raiko, T.5
-
30
-
-
84965157716
-
Gradient estimation using stochastic computation graphs
-
John Schulman, Nicolas Heess, Theophane Weber, and Pieter Abbeel. Gradient estimation using stochastic computation graphs. In Advances in Neural Information Processing Systems, pages 3510-3522, 2015.
-
(2015)
Advances in Neural Information Processing Systems
, pp. 3510-3522
-
-
Schulman, J.1
Heess, N.2
Weber, T.3
Abbeel, P.4
-
32
-
-
85007171100
-
Learning structured output representation using deep conditional generative models
-
Kihyuk Sohn, Honglak Lee, and Xinchen Yan. Learning structured output representation using deep conditional generative models. In Advances in Neural Information Processing Systems, pages 3465-3473, 2015.
-
(2015)
Advances in Neural Information Processing Systems
, pp. 3465-3473
-
-
Sohn, K.1
Lee, H.2
Yan, X.3
-
33
-
-
85019264158
-
Ladder variational autoencoders
-
C. K. Sønderby, T. Raiko, L. Maaløe, S. K. Sønderby, and O. Winther. Ladder variational autoencoders. In Advances in Neural Information Processing Systems, 2016.
-
(2016)
Advances in Neural Information Processing Systems
-
-
Sønderby, C.K.1
Raiko, T.2
Maaløe, L.3
Sønderby, S.K.4
Winther, O.5
|