-
1
-
-
85071890019
-
-
Oxford University Press
-
Riley RD, van der Windt D, Croft P, et al, eds. Prognosis Research in Healthcare: Concepts, Methods and Impact. Oxford University Press, 2019.
-
(2019)
Prognosis Research in Healthcare: Concepts, Methods and Impact
-
-
Riley, R.D.1
Van Der-Windt, D.2
Croft, P.3
-
2
-
-
84874505367
-
Prognosis research strategy (PROGRESS) 3: Prognostic model research
-
10.1371/journal.pmed.1001381 23393430
-
Steyerberg EW, Moons KG, van der Windt DA, et al. PROGRESS Group. Prognosis Research Strategy (PROGRESS) 3: prognostic model research. PLoS Med 2013;10:e1001381. 10.1371/journal.pmed.1001381 23393430
-
(2013)
PLoS Med
, vol.10
-
-
Steyerberg, E.W.1
Moons, K.G.2
Van Der-Windt, D.A.3
-
4
-
-
0034063321
-
Derivation of a simple clinical model to categorize patients probability of pulmonary embolism: Increasing the models utility with the SimpliRED D-dimer
-
10.1055/s-0037-1613830 10744147
-
Wells PS, Anderson DR, Rodger M, et al. Derivation of a simple clinical model to categorize patients probability of pulmonary embolism: increasing the models utility with the SimpliRED D-dimer. Thromb Haemost 2000;83:416-20. 10.1055/s-0037-1613830 10744147
-
(2000)
Thromb Haemost
, vol.83
, pp. 416-420
-
-
Wells, P.S.1
Anderson, D.R.2
Rodger, M.3
-
5
-
-
0031588519
-
Value of assessment of pretest probability of deep-vein thrombosis in clinical management
-
10.1016/S0140-6736(97)08140-3 9428249
-
Wells PS, Anderson DR, Bormanis J, et al. Value of assessment of pretest probability of deep-vein thrombosis in clinical management. Lancet 1997;350:1795-8. 10.1016/S0140-6736(97)08140-3 9428249
-
(1997)
Lancet
, vol.350
, pp. 1795-1798
-
-
Wells, P.S.1
Anderson, D.R.2
Bormanis, J.3
-
6
-
-
0026011159
-
Cardiovascular disease risk profiles
-
10.1016/0002-8703(91)90861-B 1985385
-
Anderson KM, Odell PM, Wilson PW, Kannel WB. Cardiovascular disease risk profiles. Am Heart J 1991;121:293-8. 10.1016/0002-8703(91)90861-B 1985385
-
(1991)
Am Heart J
, vol.121
, pp. 293-298
-
-
Anderson, K.M.1
Odell, P.M.2
Wilson, P.W.3
Kannel, W.B.4
-
7
-
-
85019744945
-
Development and validation of QRISK3 risk prediction algorithms to estimate future risk of cardiovascular disease: Prospective cohort study
-
10.1136/bmj.j2099 28536104
-
Hippisley-Cox J, Coupland C, Brindle P. Development and validation of QRISK3 risk prediction algorithms to estimate future risk of cardiovascular disease: prospective cohort study. BMJ 2017;357:j2099. 10.1136/bmj.j2099 28536104
-
(2017)
BMJ
, vol.357
, pp. j2099
-
-
Hippisley-Cox, J.1
Coupland, C.2
Brindle, P.3
-
8
-
-
0020031067
-
A prognostic index in primary breast cancer
-
10.1038/bjc.1982.62 7073932
-
Haybittle JL, Blamey RW, Elston CW, et al. A prognostic index in primary breast cancer. Br J Cancer 1982;45:361-6. 10.1038/bjc.1982.62 7073932
-
(1982)
Br J Cancer
, vol.45
, pp. 361-366
-
-
Haybittle, J.L.1
Blamey, R.W.2
Elston, C.W.3
-
9
-
-
0026808390
-
The nottingham prognostic index in primary breast cancer
-
10.1007/BF01840834 1391987
-
Galea MH, Blamey RW, Elston CE, Ellis IO. The Nottingham Prognostic Index in primary breast cancer. Breast Cancer Res Treat 1992;22:207-19. 10.1007/BF01840834 1391987
-
(1992)
Breast Cancer Res Treat
, vol.22
, pp. 207-219
-
-
Galea, M.H.1
Blamey, R.W.2
Elston, C.E.3
Ellis, I.O.4
-
11
-
-
85049343698
-
Prognosis research ideally should measure time-varying predictors at their intended moment of use
-
10.1186/s41512-016-0006-6 31093533
-
Whittle R, Royle KL, Jordan KP, Riley RD, Mallen CD, Peat G. Prognosis research ideally should measure time-varying predictors at their intended moment of use. Diagn Progn Res 2017;1:1. 10.1186/s41512-016-0006-6 31093533
-
(2017)
Diagn Progn Res
, vol.1
, pp. 1
-
-
Whittle, R.1
Royle, K.L.2
Jordan, K.P.3
Riley, R.D.4
Mallen, C.D.5
Peat, G.6
-
12
-
-
84920623458
-
Transparent reporting of a multivariable prediction model for individual prognosis or diagnosis (TRIPOD): Explanation and elaboration
-
10.7326/M14-0698 25560730
-
Moons KG, Altman DG, Reitsma JB, et al. Transparent Reporting of a multivariable prediction model for Individual Prognosis or Diagnosis (TRIPOD): explanation and elaboration. Ann Intern Med 2015;162:W1-73. 10.7326/M14-0698 25560730
-
(2015)
Ann Intern Med
, vol.162
, pp. W1-W73
-
-
Moons, K.G.1
Altman, D.G.2
Reitsma, J.B.3
-
13
-
-
84996911556
-
No rationale for 1 variable per 10 events criterion for binary logistic regression analysis
-
10.1186/s12874-016-0267-3 27881078
-
van Smeden M, de Groot JA, Moons KG, et al. No rationale for 1 variable per 10 events criterion for binary logistic regression analysis. BMC Med Res Methodol 2016;16:163. 10.1186/s12874-016-0267-3 27881078
-
(2016)
BMC Med Res Methodol
, vol.16
, pp. 163
-
-
Van Smeden, M.1
De Groot, J.A.2
Moons, K.G.3
-
14
-
-
85049920258
-
Sample size for binary logistic prediction models: Beyond events per variable criteria
-
10.1177/962280218784726. 29966490
-
van Smeden M, Moons KG, de Groot JA, et al. Sample size for binary logistic prediction models: Beyond events per variable criteria. Stat Methods Med Res 2019;28:2455-74. 10.1177/962280218784726. 29966490
-
(2019)
Stat Methods Med Res
, vol.28
, pp. 2455-2474
-
-
Van Smeden, M.1
Moons, K.G.2
De Groot, J.A.3
-
15
-
-
85055292302
-
Minimum sample size for developing a multivariable prediction model: PART II - Binary and time-to-event outcomes
-
10.1002/sim.7992 30357870
-
Riley RD, Snell KI, Ensor J, et al. Minimum sample size for developing a multivariable prediction model: PART II - binary and time-to-event outcomes. Stat Med 2019;38:1276-96. 10.1002/sim.7992 30357870
-
(2019)
Stat Med
, vol.38
, pp. 1276-1296
-
-
Riley, R.D.1
Snell, K.I.2
Ensor, J.3
-
16
-
-
85055265422
-
Minimum sample size for developing a multivariable prediction model: Part i - Continuous outcomes
-
10.1002/sim.7993 30347470
-
Riley RD, Snell KIE, Ensor J, et al. Minimum sample size for developing a multivariable prediction model: Part I - Continuous outcomes. Stat Med 2019;38:1262-75. 10.1002/sim.7993 30347470
-
(2019)
Stat Med
, vol.38
, pp. 1262-1275
-
-
Riley, R.D.1
Snell, K.I.E.2
Ensor, J.3
-
17
-
-
79960848483
-
Performance of logistic regression modeling: Beyond the number of events per variable, the role of data structure
-
10.1016/j.jclinepi.2010.11.012 21411281
-
Courvoisier DS, Combescure C, Agoritsas T, Gayet-Ageron A, Perneger TV. Performance of logistic regression modeling: beyond the number of events per variable, the role of data structure. J Clin Epidemiol 2011;64:993-1000. 10.1016/j.jclinepi.2010.11.012 21411281
-
(2011)
J Clin Epidemiol
, vol.64
, pp. 993-1000
-
-
Courvoisier, D.S.1
Combescure, C.2
Agoritsas, T.3
Gayet-Ageron, A.4
Perneger, T.V.5
-
18
-
-
85059557306
-
Sample size considerations and predictive performance of multinomial logistic prediction models
-
10.1002/sim.8063 30614028
-
de Jong VMT, Eijkemans MJC, van Calster B, et al. Sample size considerations and predictive performance of multinomial logistic prediction models. Stat Med 2019;38:1601-19. 10.1002/sim.8063 30614028
-
(2019)
Stat Med
, vol.38
, pp. 1601-1619
-
-
De Jong, V.M.T.1
Eijkemans, M.J.C.2
Van Calster, B.3
-
19
-
-
0029613841
-
Importance of events per independent variable in proportional hazards regression analysis. II. Accuracy and precision of regression estimates
-
10.1016/0895-4356(95)00048-8 8543964
-
Peduzzi P, Concato J, Feinstein AR, Holford TR. Importance of events per independent variable in proportional hazards regression analysis. II. Accuracy and precision of regression estimates. J Clin Epidemiol 1995;48:1503-10. 10.1016/0895-4356(95)00048-8 8543964
-
(1995)
J Clin Epidemiol
, vol.48
, pp. 1503-1510
-
-
Peduzzi, P.1
Concato, J.2
Feinstein, A.R.3
Holford, T.R.4
-
20
-
-
0030474271
-
A simulation study of the number of events per variable in logistic regression analysis
-
10.1016/S0895-4356(96)00236-3 8970487
-
Peduzzi P, Concato J, Kemper E, Holford TR, Feinstein AR. A simulation study of the number of events per variable in logistic regression analysis. J Clin Epidemiol 1996;49:1373-9. 10.1016/S0895-4356(96)00236-3 8970487
-
(1996)
J Clin Epidemiol
, vol.49
, pp. 1373-1379
-
-
Peduzzi, P.1
Concato, J.2
Kemper, E.3
Holford, T.R.4
Feinstein, A.R.5
-
21
-
-
0029584326
-
Importance of events per independent variable in proportional hazards analysis. I. Background, goals, and general strategy
-
10.1016/0895-4356(95)00510-2 8543963
-
Concato J, Peduzzi P, Holford TR, Feinstein AR. Importance of events per independent variable in proportional hazards analysis. I. Background, goals, and general strategy. J Clin Epidemiol 1995;48:1495-501. 10.1016/0895-4356(95)00510-2 8543963
-
(1995)
J Clin Epidemiol
, vol.48
, pp. 1495-1501
-
-
Concato, J.1
Peduzzi, P.2
Holford, T.R.3
Feinstein, A.R.4
-
22
-
-
33847382959
-
Relaxing the rule of ten events per variable in logistic and Cox regression
-
10.1093/aje/kwk052 17182981
-
Vittinghoff E, McCulloch CE. Relaxing the rule of ten events per variable in logistic and Cox regression. Am J Epidemiol 2007;165:710-8. 10.1093/aje/kwk052 17182981
-
(2007)
Am J Epidemiol
, vol.165
, pp. 710-718
-
-
Vittinghoff, E.1
McCulloch, C.E.2
-
23
-
-
84962074698
-
Adequate sample size for developing prediction models is not simply related to events per variable
-
10.1016/j.jclinepi.2016.02.031 26964707
-
Ogundimu EO, Altman DG, Collins GS. Adequate sample size for developing prediction models is not simply related to events per variable. J Clin Epidemiol 2016;76:175-82. 10.1016/j.jclinepi.2016.02.031 26964707
-
(2016)
J Clin Epidemiol
, vol.76
, pp. 175-182
-
-
Ogundimu, E.O.1
Altman, D.G.2
Collins, G.S.3
-
24
-
-
85018749650
-
Events per variable (EPV) and the relative performance of different strategies for estimating the out-of-sample validity of logistic regression models
-
10.1177/0962280214558972 25411322
-
Austin PC, Steyerberg EW. Events per variable (EPV) and the relative performance of different strategies for estimating the out-of-sample validity of logistic regression models. Stat Methods Med Res 2017;26:796-808. 10.1177/0962280214558972 25411322
-
(2017)
Stat Methods Med Res
, vol.26
, pp. 796-808
-
-
Austin, P.C.1
Steyerberg, E.W.2
-
25
-
-
84948711435
-
A simulation study of sample size demonstrated the importance of the number of events per variable to develop prediction models in clustered data
-
10.1016/j.jclinepi.2015.02.002 25817942
-
Wynants L, Bouwmeester W, Moons KG, et al. A simulation study of sample size demonstrated the importance of the number of events per variable to develop prediction models in clustered data. J Clin Epidemiol 2015;68:1406-14. 10.1016/j.jclinepi.2015.02.002 25817942
-
(2015)
J Clin Epidemiol
, vol.68
, pp. 1406-1414
-
-
Wynants, L.1
Bouwmeester, W.2
Moons, K.G.3
-
26
-
-
84923873960
-
Modern modelling techniques are data hungry: A simulation study for predicting dichotomous endpoints
-
10.1186/1471-2288-14-137 25532820
-
van der Ploeg T, Austin PC, Steyerberg EW. Modern modelling techniques are data hungry: a simulation study for predicting dichotomous endpoints. BMC Med Res Methodol 2014;14:137. 10.1186/1471-2288-14-137 25532820
-
(2014)
BMC Med Res Methodol
, vol.14
, pp. 137
-
-
Van Der-Ploeg, T.1
Austin, P.C.2
Steyerberg, E.W.3
-
27
-
-
84928929655
-
The number of subjects per variable required in linear regression analyses
-
10.1016/j.jclinepi.2014.12.014 25704724
-
Austin PC, Steyerberg EW. The number of subjects per variable required in linear regression analyses. J Clin Epidemiol 2015;68:627-36. 10.1016/j.jclinepi.2014.12.014 25704724
-
(2015)
J Clin Epidemiol
, vol.68
, pp. 627-636
-
-
Austin, P.C.1
Steyerberg, E.W.2
-
28
-
-
0030069896
-
Multivariable prognostic models: Issues in developing models, evaluating assumptions and adequacy, and measuring and reducing errors
-
10.1002/(SICI)1097-0258(19960229)15:4<361::AID-SIM168>3.0.CO;2-4 8668867
-
Harrell FEJr, Lee KL, Mark DB. Multivariable prognostic models: issues in developing models, evaluating assumptions and adequacy, and measuring and reducing errors. Stat Med 1996;15:361-87. 10.1002/(SICI)1097-0258(19960229)15:4<361::AID-SIM168>3.0.CO;2-4 8668867
-
(1996)
Stat Med
, vol.15
, pp. 361-387
-
-
Harrell, F.E.1
Lee, K.L.2
Mark, D.B.3
-
29
-
-
84942465542
-
How to develop a more accurate risk prediction model when there are few events
-
10.1136/bmj.h3868 26264962
-
Pavlou M, Ambler G, Seaman SR, et al. How to develop a more accurate risk prediction model when there are few events. BMJ 2015;351:h3868. 10.1136/bmj.h3868 26264962
-
(2015)
BMJ
, vol.351
, pp. h3868
-
-
Pavlou, M.1
Ambler, G.2
Seaman, S.R.3
-
30
-
-
0035530906
-
Shrinkage and penalized likelihood as methods to improve predictive accuracy
-
1111/1467-9574.00154
-
Van Houwelingen JC. Shrinkage and penalized likelihood as methods to improve predictive accuracy. Stat Neerl 2001;55:17-3410.1111/1467-9574.00154.
-
(2001)
Stat Neerl
, vol.55
, pp. 17-3410
-
-
Van Houwelingen, J.C.1
-
31
-
-
0025151933
-
Predictive value of statistical models
-
10.1002/sim.4780091109 2277880
-
Van Houwelingen JC, Le Cessie S. Predictive value of statistical models. Stat Med 1990;9:1303-25. 10.1002/sim.4780091109 2277880
-
(1990)
Stat Med
, vol.9
, pp. 1303-1325
-
-
Van Houwelingen, J.C.1
Le Cessie, S.2
-
32
-
-
0001573594
-
Regression, prediction and shrinkage
-
1111/j.2517-6161.1983.tb01258.x
-
Copas JB. Regression, Prediction and Shrinkage. J R Stat Soc B 1983;45:311-5410.1111/j.2517-6161.1983.tb01258.x.
-
(1983)
J R Stat Soc B
, vol.45
, pp. 311-5410
-
-
Copas, J.B.1
-
33
-
-
0001287271
-
Regression shrinkage and selection via the lasso
-
1111/j.2517-6161.1996.tb02080.x
-
Tibshirani R. Regression shrinkage and selection via the lasso. J R Stat Soc B 1996;58:267-8810.1111/j.2517-6161.1996.tb02080.x.
-
(1996)
J R Stat Soc B
, vol.58
, pp. 267-8810
-
-
Tibshirani, R.1
-
34
-
-
0031160755
-
Using regression models for prediction: Shrinkage and regression to the mean
-
10.1177/096228029700600206 9261914
-
Copas JB. Using regression models for prediction: shrinkage and regression to the mean. Stat Methods Med Res 1997;6:167-83. 10.1177/096228029700600206 9261914
-
(1997)
Stat Methods Med Res
, vol.6
, pp. 167-183
-
-
Copas, J.B.1
-
36
-
-
85009129532
-
A guide to systematic review and meta-analysis of prediction model performance
-
10.1136/bmj.i6460 28057641
-
Debray TP, Damen JA, Snell KI, et al. A guide to systematic review and meta-analysis of prediction model performance. BMJ 2017;356:i6460. 10.1136/bmj.i6460 28057641
-
(2017)
BMJ
, vol.356
, pp. i6460
-
-
Debray, T.P.1
Damen, J.A.2
Snell, K.I.3
-
37
-
-
85055267920
-
Tufts PACE clinical predictive model registry: Update 1990 through 2015
-
10.1186/s41512-017-0021-2 31093549
-
Wessler BS, Paulus J, Lundquist CM, et al. Tufts PACE Clinical Predictive Model Registry: update 1990 through 2015. Diagn Progn Res 2017;1:20. 10.1186/s41512-017-0021-2 31093549
-
(2017)
Diagn Progn Res
, vol.1
, pp. 20
-
-
Wessler, B.S.1
Paulus, J.2
Lundquist, C.M.3
-
38
-
-
77956887506
-
A note on a general definition of the coefficient of determination
-
10.1093/biomet/78.3.691
-
Nagelkerke N. A note on a general definition of the coefficient of determination. Biometrika 1991;78:691-2. 10.1093/biomet/78.3.691.
-
(1991)
Biometrika
, vol.78
, pp. 691-692
-
-
Nagelkerke, N.1
-
39
-
-
0002297105
-
Conditional logit analysis of qualitative choice behavior
-
In: Zarembka P, ed. Academic Press
-
McFadden D. Conditional logit analysis of qualitative choice behavior. In: Zarembka P, ed. Frontiers in Econometrics New York. Academic Press, 1974: 104-42.
-
(1974)
Frontiers in Econometrics New York
, pp. 104-142
-
-
McFadden, D.1
-
40
-
-
13644250447
-
Explained randomness in proportional hazards models
-
10.1002/sim.1946 15532086
-
O'Quigley J, Xu R, Stare J. Explained randomness in proportional hazards models. Stat Med 2005;24:479-89. 10.1002/sim.1946 15532086
-
(2005)
Stat Med
, vol.24
, pp. 479-489
-
-
O'Quigley, J.1
Xu, R.2
Stare, J.3
-
41
-
-
33646515606
-
Explained variation for survival models
-
1177/1536867X0600600105
-
Royston P. Explained variation for survival models. Stata J 2006;6:83-9610.1177/1536867X0600600105.
-
(2006)
Stata J
, vol.6
, pp. 83-9610
-
-
Royston, P.1
-
42
-
-
1442351098
-
A new measure of prognostic separation in survival data
-
10.1002/sim.1621 14981672
-
Royston P, Sauerbrei W. A new measure of prognostic separation in survival data. Stat Med 2004;23:723-48. 10.1002/sim.1621 14981672
-
(2004)
Stat Med
, vol.23
, pp. 723-748
-
-
Royston, P.1
Sauerbrei, W.2
-
43
-
-
79955409868
-
Clinical risk prediction for pre-eclampsia in nulliparous women: Development of model in international prospective cohort
-
10.1136/bmj.d1875 21474517
-
North RA, McCowan LM, Dekker GA, et al. Clinical risk prediction for pre-eclampsia in nulliparous women: development of model in international prospective cohort. BMJ 2011;342:d1875. 10.1136/bmj.d1875 21474517
-
(2011)
BMJ
, vol.342
, pp. d1875
-
-
North, R.A.1
McCowan, L.M.2
Dekker, G.A.3
-
44
-
-
85060861394
-
A guide to systematic review and meta-analysis of prognostic factor studies
-
10.1136/bmj.k4597 30700442
-
Riley RD, Moons KGM, Snell KIE, et al. A guide to systematic review and meta-analysis of prognostic factor studies. BMJ 2019;364:k4597. 10.1136/bmj.k4597 30700442
-
(2019)
BMJ
, vol.364
, pp. k4597
-
-
Riley, R.D.1
Moons, K.G.M.2
Snell, K.I.E.3
-
45
-
-
84971280709
-
Systematic review of prognostic models for recurrent venous thromboembolism (VTE) post-treatment of first unprovoked VTE
-
10.1136/bmjopen-2016-011190 27154483
-
Ensor J, Riley RD, Moore D, Snell KI, Bayliss S, Fitzmaurice D. Systematic review of prognostic models for recurrent venous thromboembolism (VTE) post-treatment of first unprovoked VTE. BMJ Open 2016;6:e011190. 10.1136/bmjopen-2016-011190 27154483
-
(2016)
BMJ Open
, vol.6
, pp. e011190
-
-
Ensor, J.1
Riley, R.D.2
Moore, D.3
Snell, K.I.4
Bayliss, S.5
Fitzmaurice, D.6
-
46
-
-
84958543113
-
Prediction of risk of recurrence of venous thromboembolism following treatment for a first unprovoked venous thromboembolism: Systematic review, prognostic model and clinical decision rule, and economic evaluation
-
1-190. 10.3310/hta20120 26879848
-
Ensor J, Riley RD, Jowett S, et al. PIT-STOP collaborative group. Prediction of risk of recurrence of venous thromboembolism following treatment for a first unprovoked venous thromboembolism: systematic review, prognostic model and clinical decision rule, and economic evaluation. Health Technol Assess 2016;20:i-xxxiii, 1-190. 10.3310/hta20120 26879848
-
(2016)
Health Technol Assess
, vol.20
, pp. i-xxxiii
-
-
Ensor, J.1
Riley, R.D.2
Jowett, S.3
-
47
-
-
85069926150
-
Development and validation of a prediction model for fat mass in children and adolescents: Meta-analysis using individual participant data
-
10.1136/bmj.l4293 31340931
-
Hudda MT, Fewtrell MS, Haroun D, et al. Development and validation of a prediction model for fat mass in children and adolescents: meta-analysis using individual participant data. BMJ 2019;366:l4293. 10.1136/bmj.l4293 31340931
-
(2019)
BMJ
, vol.366
, pp. l4293
-
-
Hudda, M.T.1
Fewtrell, M.S.2
Haroun, D.3
-
48
-
-
41549115181
-
Sample size planning for statistical power and accuracy in parameter estimation
-
10.1146/annurev.psych.59.103006.093735 17937603
-
Maxwell SE, Kelley K, Rausch JR. Sample size planning for statistical power and accuracy in parameter estimation. Annu Rev Psychol 2008;59:537-63. 10.1146/annurev.psych.59.103006.093735 17937603
-
(2008)
Annu Rev Psychol
, vol.59
, pp. 537-563
-
-
Maxwell, S.E.1
Kelley, K.2
Rausch, J.R.3
-
49
-
-
0043074894
-
An overview of variance inflation factors for sample-size calculation
-
10.1177/0163278703255230 12971199
-
Hsieh FY, Lavori PW, Cohen HJ, Feussner JR. An overview of variance inflation factors for sample-size calculation. Eval Health Prof 2003;26:239-57. 10.1177/0163278703255230 12971199
-
(2003)
Eval Health Prof
, vol.26
, pp. 239-257
-
-
Hsieh, F.Y.1
Lavori, P.W.2
Cohen, H.J.3
Feussner, J.R.4
-
50
-
-
0034528314
-
Sample-size calculations for the cox proportional hazards regression model with nonbinary covariates
-
10.1016/S0197-2456(00)00104-5 11146149
-
Hsieh FY, Lavori PW. Sample-size calculations for the Cox proportional hazards regression model with nonbinary covariates. Control Clin Trials 2000;21:552-60. 10.1016/S0197-2456(00)00104-5 11146149
-
(2000)
Control Clin Trials
, vol.21
, pp. 552-560
-
-
Hsieh, F.Y.1
Lavori, P.W.2
-
51
-
-
0034728370
-
Sample size considerations for the evaluation of prognostic factors in survival analysis
-
10.1002/(SICI)1097-0258(20000229)19:4<441::AID-SIM349>3.0.CO;2-N 10694729
-
Schmoor C, Sauerbrei W, Schumacher M. Sample size considerations for the evaluation of prognostic factors in survival analysis. Stat Med 2000;19:441-52. 10.1002/(SICI)1097-0258(20000229)19:4<441::AID-SIM349>3.0.CO;2-N 10694729
-
(2000)
Stat Med
, vol.19
, pp. 441-452
-
-
Schmoor, C.1
Sauerbrei, W.2
Schumacher, M.3
-
52
-
-
0008679660
-
Increasing statistical power without increasing sample size
-
1037/0003-066X.55.8.963
-
McClelland GH. Increasing statistical power without increasing sample size. Am Psychol 2000;55:963-410.1037/0003-066X.55.8.963.
-
(2000)
Am Psychol
, vol.55
, pp. 410-963
-
-
McClelland, G.H.1
-
53
-
-
0032581454
-
A simple method of sample size calculation for linear and logistic regression
-
10.1002/(SICI)1097-0258(19980730)17:14<1623::AID-SIM871>3.0.CO;2-S 9699234
-
Hsieh FY, Bloch DA, Larsen MD. A simple method of sample size calculation for linear and logistic regression. Stat Med 1998;17:1623-34. 10.1002/(SICI)1097-0258(19980730)17:14<1623::AID-SIM871>3.0.CO;2-S 9699234
-
(1998)
Stat Med
, vol.17
, pp. 1623-1634
-
-
Hsieh, F.Y.1
Bloch, D.A.2
Larsen, M.D.3
-
54
-
-
0043109420
-
Sample size for multiple regression: Obtaining regression coefficients that are accurate, not simply significant
-
10.1037/1082-989X.8.3.305 14596493
-
Kelley K, Maxwell SE. Sample size for multiple regression: obtaining regression coefficients that are accurate, not simply significant. Psychol Methods 2003;8:305-21. 10.1037/1082-989X.8.3.305 14596493
-
(2003)
Psychol Methods
, vol.8
, pp. 305-321
-
-
Kelley, K.1
Maxwell, S.E.2
-
55
-
-
37349102359
-
Sample size planning for the coefficient of variation from the accuracy in parameter estimation approach
-
10.3758/BF03192966 18183888
-
Kelley K. Sample size planning for the coefficient of variation from the accuracy in parameter estimation approach. Behav Res Methods 2007;39:755-66. 10.3758/BF03192966 18183888
-
(2007)
Behav Res Methods
, vol.39
, pp. 755-766
-
-
Kelley, K.1
-
56
-
-
84964857173
-
Sparse data bias: A problem hiding in plain sight
-
10.1136/bmj.i1981 27121591
-
Greenland S, Mansournia MA, Altman DG. Sparse data bias: a problem hiding in plain sight. BMJ 2016;352:i1981. 10.1136/bmj.i1981 27121591
-
(2016)
BMJ
, vol.352
, pp. i1981
-
-
Greenland, S.1
Mansournia, M.A.2
Altman, D.G.3
-
57
-
-
84976645528
-
External validation of clinical prediction models using big datasets from e-health records or IPD meta-analysis: Opportunities and challenges
-
10.1136/bmj.i3140 27334381
-
Riley RD, Ensor J, Snell KI, et al. External validation of clinical prediction models using big datasets from e-health records or IPD meta-analysis: opportunities and challenges. BMJ 2016;353:i3140. 10.1136/bmj.i3140 27334381
-
(2016)
BMJ
, vol.353
, pp. i3140
-
-
Riley, R.D.1
Ensor, J.2
Snell, K.I.3
-
58
-
-
84946072388
-
Individual participant data (IPD) meta-analyses of diagnostic and prognostic modeling studies: Guidance on their use
-
10.1371/journal.pmed.1001886 26461078
-
Debray TPA, Riley RD, Rovers MM, Reitsma JB, Moons KGCochrane IPD Meta-analysis Methods group. Individual participant data (IPD) meta-analyses of diagnostic and prognostic modeling studies: guidance on their use. PLoS Med 2015;12:e1001886. 10.1371/journal.pmed.1001886 26461078
-
(2015)
PLoS Med
, vol.12
-
-
Debray, T.P.A.1
Riley, R.D.2
Rovers, M.M.3
Reitsma, J.B.4
Moons, K.G.5
-
59
-
-
16244401458
-
Regularization and variable selection via the elastic net
-
1111/j.1467-9868.2005.00503.x
-
Zou H, Hastie T. Regularization and Variable Selection via the Elastic Net. J R Stat Soc Series B Stat Methodol 2005;67:301-2010.1111/j.1467-9868.2005.00503.x.
-
(2005)
J R Stat Soc Series B Stat Methodol
, vol.67
, pp. 301-2010
-
-
Zou, H.1
Hastie, T.2
-
60
-
-
85039762667
-
Variable selection - A review and recommendations for the practicing statistician
-
10.1002/bimj.201700067 29292533
-
Heinze G, Wallisch C, Dunkler D. Variable selection - A review and recommendations for the practicing statistician. Biom J 2018;60:431-49. 10.1002/bimj.201700067 29292533
-
(2018)
Biom J
, vol.60
, pp. 431-449
-
-
Heinze, G.1
Wallisch, C.2
Dunkler, D.3
-
61
-
-
0027081755
-
A bootstrap resampling procedure for model building: Application to the Cox regression model
-
10.1002/sim.4780111607 1293671
-
Sauerbrei W, Schumacher M. A bootstrap resampling procedure for model building: application to the Cox regression model. Stat Med 1992;11:2093-109. 10.1002/sim.4780111607 1293671
-
(1992)
Stat Med
, vol.11
, pp. 2093-2109
-
-
Sauerbrei, W.1
Schumacher, M.2
-
62
-
-
84855700441
-
Stability investigations of multivariable regression models derived from low- And high-dimensional data
-
10.1080/10543406.2011.629890 22023687
-
Sauerbrei W, Boulesteix AL, Binder H. Stability investigations of multivariable regression models derived from low- and high-dimensional data. J Biopharm Stat 2011;21:1206-31. 10.1080/10543406.2011.629890 22023687
-
(2011)
J Biopharm Stat
, vol.21
, pp. 1206-1231
-
-
Sauerbrei, W.1
Boulesteix, A.L.2
Binder, H.3
-
63
-
-
0037470273
-
Stability of multivariable fractional polynomial models with selection of variables and transformations: A bootstrap investigation
-
10.1002/sim.1310 12590419
-
Royston P, Sauerbrei W. Stability of multivariable fractional polynomial models with selection of variables and transformations: a bootstrap investigation. Stat Med 2003;22:639-59. 10.1002/sim.1310 12590419
-
(2003)
Stat Med
, vol.22
, pp. 639-659
-
-
Royston, P.1
Sauerbrei, W.2
-
64
-
-
0003684449
-
-
2nd ed. Springer, 10.1007/978-0-387-84858-7
-
Hastie T, Tibshirani R, Friedman J. The Elements of Statistical Learning: Data Mining, Inference, and Prediction. 2nd ed. Springer, 200910.1007/978-0-387-84858-7.
-
(2009)
The Elements of Statistical Learning: Data Mining, Inference, and Prediction
-
-
Hastie, T.1
Tibshirani, R.2
Friedman, J.3
-
65
-
-
84903607237
-
Risk prediction with machine learning and regression methods
-
10.1002/bimj.201300297 24615859
-
Steyerberg EW, van der Ploeg T, Van Calster B. Risk prediction with machine learning and regression methods. Biom J 2014;56:601-6. 10.1002/bimj.201300297 24615859
-
(2014)
Biom J
, vol.56
, pp. 601-606
-
-
Steyerberg, E.W.1
Van Der-Ploeg, T.2
Van Calster, B.3
-
66
-
-
4344696163
-
Validation and updating of predictive logistic regression models: A study on sample size and shrinkage
-
10.1002/sim.1844 15287085
-
Steyerberg EW, Borsboom GJ, van Houwelingen HC, Eijkemans MJ, Habbema JD. Validation and updating of predictive logistic regression models: a study on sample size and shrinkage. Stat Med 2004;23:2567-86. 10.1002/sim.1844 15287085
-
(2004)
Stat Med
, vol.23
, pp. 2567-2586
-
-
Steyerberg, E.W.1
Borsboom, G.J.2
Van Houwelingen, H.C.3
Eijkemans, M.J.4
Habbema, J.D.5
-
67
-
-
85005943283
-
A closed testing procedure to select an appropriate method for updating prediction models
-
10.1002/sim.7179 27891652
-
Vergouwe Y, Nieboer D, Oostenbrink R, et al. A closed testing procedure to select an appropriate method for updating prediction models. Stat Med 2017;36:4529-39. 10.1002/sim.7179 27891652
-
(2017)
Stat Med
, vol.36
, pp. 4529-4539
-
-
Vergouwe, Y.1
Nieboer, D.2
Oostenbrink, R.3
-
68
-
-
85059267182
-
PROBAST: A tool to assess the risk of bias and applicability of prediction model studies
-
10.7326/M18-1376 30596875
-
Wolff RF, Moons KGM, Riley RD, et al. PROBAST Group†. PROBAST: A Tool to Assess the Risk of Bias and Applicability of Prediction Model Studies. Ann Intern Med 2019;170:51-8. 10.7326/M18-1376 30596875
-
(2019)
Ann Intern Med
, vol.170
, pp. 51-58
-
-
Wolff, R.F.1
Moons, K.G.M.2
Riley, R.D.3
-
69
-
-
85059273231
-
PROBAST: A tool to assess risk of bias and applicability of prediction model studies: Explanation and elaboration
-
10.7326/M18-1377 30596876
-
Moons KGM, Wolff RF, Riley RD, et al. PROBAST: A Tool to Assess Risk of Bias and Applicability of Prediction Model Studies: Explanation and Elaboration. Ann Intern Med 2019;170:W1-33. 10.7326/M18-1377 30596876
-
(2019)
Ann Intern Med
, vol.170
, pp. W1-W33
-
-
Moons, K.G.M.1
Wolff, R.F.2
Riley, R.D.3
-
70
-
-
0034906866
-
Internal validation of predictive models: Efficiency of some procedures for logistic regression analysis
-
10.1016/S0895-4356(01)00341-9 11470385
-
Steyerberg EW, Harrell FEJJr, Borsboom GJ, Eijkemans MJ, Vergouwe Y, Habbema JD. Internal validation of predictive models: efficiency of some procedures for logistic regression analysis. J Clin Epidemiol 2001;54:774-81. 10.1016/S0895-4356(01)00341-9 11470385
-
(2001)
J Clin Epidemiol
, vol.54
, pp. 774-781
-
-
Steyerberg, E.W.1
Harrell, F.E.J.2
Borsboom, G.J.3
Eijkemans, M.J.4
Vergouwe, Y.5
Habbema, J.D.6
-
71
-
-
84952631019
-
Prediction models need appropriate internal, internal-external, and external validation
-
10.1016/j.jclinepi.2015.04.005 25981519
-
Steyerberg EW, Harrell FEJr. Prediction models need appropriate internal, internal-external, and external validation. J Clin Epidemiol 2016;69:245-7. 10.1016/j.jclinepi.2015.04.005 25981519
-
(2016)
J Clin Epidemiol
, vol.69
, pp. 245-247
-
-
Steyerberg, E.W.1
Harrell, F.E.2
-
72
-
-
84864822196
-
Incorporating published univariable associations in diagnostic and prognostic modeling
-
10.1186/1471-2288-12-121 22883206
-
Debray TP, Koffijberg H, Lu D, Vergouwe Y, Steyerberg EW, Moons KG. Incorporating published univariable associations in diagnostic and prognostic modeling. BMC Med Res Methodol 2012;12:121. 10.1186/1471-2288-12-121 22883206
-
(2012)
BMC Med Res Methodol
, vol.12
, pp. 121
-
-
Debray, T.P.1
Koffijberg, H.2
Lu, D.3
Vergouwe, Y.4
Steyerberg, E.W.5
Moons, K.G.6
-
73
-
-
84922392234
-
Meta-analysis and aggregation of multiple published prediction models
-
10.1002/sim.6080 24752993
-
Debray TP, Koffijberg H, Nieboer D, Vergouwe Y, Steyerberg EW, Moons KG. Meta-analysis and aggregation of multiple published prediction models. Stat Med 2014;33:2341-62. 10.1002/sim.6080 24752993
-
(2014)
Stat Med
, vol.33
, pp. 2341-2362
-
-
Debray, T.P.1
Koffijberg, H.2
Nieboer, D.3
Vergouwe, Y.4
Steyerberg, E.W.5
Moons, K.G.6
-
74
-
-
84866440887
-
Aggregating published prediction models with individual participant data: A comparison of different approaches
-
10.1002/sim.5412 22733546
-
Debray TP, Koffijberg H, Vergouwe Y, Moons KG, Steyerberg EW. Aggregating published prediction models with individual participant data: a comparison of different approaches. Stat Med 2012;31:2697-712. 10.1002/sim.5412 22733546
-
(2012)
Stat Med
, vol.31
, pp. 2697-2712
-
-
Debray, T.P.1
Koffijberg, H.2
Vergouwe, Y.3
Moons, K.G.4
Steyerberg, E.W.5
-
75
-
-
84954405416
-
Sample size considerations for the external validation of a multivariable prognostic model: A resampling study
-
10.1002/sim.6787 26553135
-
Collins GS, Ogundimu EO, Altman DG. Sample size considerations for the external validation of a multivariable prognostic model: a resampling study. Stat Med 2016;35:214-26. 10.1002/sim.6787 26553135
-
(2016)
Stat Med
, vol.35
, pp. 214-226
-
-
Collins, G.S.1
Ogundimu, E.O.2
Altman, D.G.3
-
76
-
-
84957076656
-
A calibration hierarchy for risk models was defined: From utopia to empirical data
-
10.1016/j.jclinepi.2015.12.005 26772608
-
Van Calster B, Nieboer D, Vergouwe Y, De Cock B, Pencina MJ, Steyerberg EW. A calibration hierarchy for risk models was defined: from utopia to empirical data. J Clin Epidemiol 2016;74:167-76. 10.1016/j.jclinepi.2015.12.005 26772608
-
(2016)
J Clin Epidemiol
, vol.74
, pp. 167-176
-
-
Van Calster, B.1
Nieboer, D.2
Vergouwe, Y.3
De Cock, B.4
Pencina, M.J.5
Steyerberg, E.W.6
-
77
-
-
84944065233
-
Discrimination-based sample size calculations for multivariable prognostic models for time-to-event data
-
10.1186/s12874-015-0078-y 26459415
-
Jinks RC, Royston P, Parmar MK. Discrimination-based sample size calculations for multivariable prognostic models for time-to-event data. BMC Med Res Methodol 2015;15:82. 10.1186/s12874-015-0078-y 26459415
-
(2015)
BMC Med Res Methodol
, vol.15
, pp. 82
-
-
Jinks, R.C.1
Royston, P.2
Parmar, M.K.3
-
78
-
-
17444420853
-
Substantial effective sample sizes were required for external validation studies of predictive logistic regression models
-
10.1016/j.jclinepi.2004.06.017 15845334
-
Vergouwe Y, Steyerberg EW, Eijkemans MJ, Habbema JD. Substantial effective sample sizes were required for external validation studies of predictive logistic regression models. J Clin Epidemiol 2005;58:475-83. 10.1016/j.jclinepi.2004.06.017 15845334
-
(2005)
J Clin Epidemiol
, vol.58
, pp. 475-483
-
-
Vergouwe, Y.1
Steyerberg, E.W.2
Eijkemans, M.J.3
Habbema, J.D.4
|