메뉴 건너뛰기




Volumn 368, Issue , 2020, Pages

Calculating the sample size required for developing a clinical prediction model

Author keywords

[No Author keywords available]

Indexed keywords

ARTICLE; CALCULATION; CLINICAL DECISION MAKING; CLINICAL PREDICTION MODEL; HUMAN; MACHINE LEARNING; MEASUREMENT ACCURACY; OUTCOME ASSESSMENT; PREDICTION; PRINCIPAL COMPONENT ANALYSIS; PRIORITY JOURNAL; PROBABILITY; PROGNOSTIC ASSESSMENT; REGRESSION ANALYSIS; RISK ASSESSMENT; SAMPLE SIZE; SAMPLING ERROR; SOFTWARE; STATISTICAL ANALYSIS; STATISTICAL MODEL; FORECASTING; THEORETICAL MODEL;

EID: 85082019842     PISSN: 09598146     EISSN: 17561833     Source Type: Journal    
DOI: 10.1136/bmj.m441     Document Type: Article
Times cited : (1024)

References (78)
  • 2
    • 84874505367 scopus 로고    scopus 로고
    • Prognosis research strategy (PROGRESS) 3: Prognostic model research
    • 10.1371/journal.pmed.1001381 23393430
    • Steyerberg EW, Moons KG, van der Windt DA, et al. PROGRESS Group. Prognosis Research Strategy (PROGRESS) 3: prognostic model research. PLoS Med 2013;10:e1001381. 10.1371/journal.pmed.1001381 23393430
    • (2013) PLoS Med , vol.10
    • Steyerberg, E.W.1    Moons, K.G.2    Van Der-Windt, D.A.3
  • 4
    • 0034063321 scopus 로고    scopus 로고
    • Derivation of a simple clinical model to categorize patients probability of pulmonary embolism: Increasing the models utility with the SimpliRED D-dimer
    • 10.1055/s-0037-1613830 10744147
    • Wells PS, Anderson DR, Rodger M, et al. Derivation of a simple clinical model to categorize patients probability of pulmonary embolism: increasing the models utility with the SimpliRED D-dimer. Thromb Haemost 2000;83:416-20. 10.1055/s-0037-1613830 10744147
    • (2000) Thromb Haemost , vol.83 , pp. 416-420
    • Wells, P.S.1    Anderson, D.R.2    Rodger, M.3
  • 5
    • 0031588519 scopus 로고    scopus 로고
    • Value of assessment of pretest probability of deep-vein thrombosis in clinical management
    • 10.1016/S0140-6736(97)08140-3 9428249
    • Wells PS, Anderson DR, Bormanis J, et al. Value of assessment of pretest probability of deep-vein thrombosis in clinical management. Lancet 1997;350:1795-8. 10.1016/S0140-6736(97)08140-3 9428249
    • (1997) Lancet , vol.350 , pp. 1795-1798
    • Wells, P.S.1    Anderson, D.R.2    Bormanis, J.3
  • 6
    • 0026011159 scopus 로고
    • Cardiovascular disease risk profiles
    • 10.1016/0002-8703(91)90861-B 1985385
    • Anderson KM, Odell PM, Wilson PW, Kannel WB. Cardiovascular disease risk profiles. Am Heart J 1991;121:293-8. 10.1016/0002-8703(91)90861-B 1985385
    • (1991) Am Heart J , vol.121 , pp. 293-298
    • Anderson, K.M.1    Odell, P.M.2    Wilson, P.W.3    Kannel, W.B.4
  • 7
    • 85019744945 scopus 로고    scopus 로고
    • Development and validation of QRISK3 risk prediction algorithms to estimate future risk of cardiovascular disease: Prospective cohort study
    • 10.1136/bmj.j2099 28536104
    • Hippisley-Cox J, Coupland C, Brindle P. Development and validation of QRISK3 risk prediction algorithms to estimate future risk of cardiovascular disease: prospective cohort study. BMJ 2017;357:j2099. 10.1136/bmj.j2099 28536104
    • (2017) BMJ , vol.357 , pp. j2099
    • Hippisley-Cox, J.1    Coupland, C.2    Brindle, P.3
  • 8
    • 0020031067 scopus 로고
    • A prognostic index in primary breast cancer
    • 10.1038/bjc.1982.62 7073932
    • Haybittle JL, Blamey RW, Elston CW, et al. A prognostic index in primary breast cancer. Br J Cancer 1982;45:361-6. 10.1038/bjc.1982.62 7073932
    • (1982) Br J Cancer , vol.45 , pp. 361-366
    • Haybittle, J.L.1    Blamey, R.W.2    Elston, C.W.3
  • 9
    • 0026808390 scopus 로고
    • The nottingham prognostic index in primary breast cancer
    • 10.1007/BF01840834 1391987
    • Galea MH, Blamey RW, Elston CE, Ellis IO. The Nottingham Prognostic Index in primary breast cancer. Breast Cancer Res Treat 1992;22:207-19. 10.1007/BF01840834 1391987
    • (1992) Breast Cancer Res Treat , vol.22 , pp. 207-219
    • Galea, M.H.1    Blamey, R.W.2    Elston, C.E.3    Ellis, I.O.4
  • 11
    • 85049343698 scopus 로고    scopus 로고
    • Prognosis research ideally should measure time-varying predictors at their intended moment of use
    • 10.1186/s41512-016-0006-6 31093533
    • Whittle R, Royle KL, Jordan KP, Riley RD, Mallen CD, Peat G. Prognosis research ideally should measure time-varying predictors at their intended moment of use. Diagn Progn Res 2017;1:1. 10.1186/s41512-016-0006-6 31093533
    • (2017) Diagn Progn Res , vol.1 , pp. 1
    • Whittle, R.1    Royle, K.L.2    Jordan, K.P.3    Riley, R.D.4    Mallen, C.D.5    Peat, G.6
  • 12
    • 84920623458 scopus 로고    scopus 로고
    • Transparent reporting of a multivariable prediction model for individual prognosis or diagnosis (TRIPOD): Explanation and elaboration
    • 10.7326/M14-0698 25560730
    • Moons KG, Altman DG, Reitsma JB, et al. Transparent Reporting of a multivariable prediction model for Individual Prognosis or Diagnosis (TRIPOD): explanation and elaboration. Ann Intern Med 2015;162:W1-73. 10.7326/M14-0698 25560730
    • (2015) Ann Intern Med , vol.162 , pp. W1-W73
    • Moons, K.G.1    Altman, D.G.2    Reitsma, J.B.3
  • 13
    • 84996911556 scopus 로고    scopus 로고
    • No rationale for 1 variable per 10 events criterion for binary logistic regression analysis
    • 10.1186/s12874-016-0267-3 27881078
    • van Smeden M, de Groot JA, Moons KG, et al. No rationale for 1 variable per 10 events criterion for binary logistic regression analysis. BMC Med Res Methodol 2016;16:163. 10.1186/s12874-016-0267-3 27881078
    • (2016) BMC Med Res Methodol , vol.16 , pp. 163
    • Van Smeden, M.1    De Groot, J.A.2    Moons, K.G.3
  • 14
    • 85049920258 scopus 로고    scopus 로고
    • Sample size for binary logistic prediction models: Beyond events per variable criteria
    • 10.1177/962280218784726. 29966490
    • van Smeden M, Moons KG, de Groot JA, et al. Sample size for binary logistic prediction models: Beyond events per variable criteria. Stat Methods Med Res 2019;28:2455-74. 10.1177/962280218784726. 29966490
    • (2019) Stat Methods Med Res , vol.28 , pp. 2455-2474
    • Van Smeden, M.1    Moons, K.G.2    De Groot, J.A.3
  • 15
    • 85055292302 scopus 로고    scopus 로고
    • Minimum sample size for developing a multivariable prediction model: PART II - Binary and time-to-event outcomes
    • 10.1002/sim.7992 30357870
    • Riley RD, Snell KI, Ensor J, et al. Minimum sample size for developing a multivariable prediction model: PART II - binary and time-to-event outcomes. Stat Med 2019;38:1276-96. 10.1002/sim.7992 30357870
    • (2019) Stat Med , vol.38 , pp. 1276-1296
    • Riley, R.D.1    Snell, K.I.2    Ensor, J.3
  • 16
    • 85055265422 scopus 로고    scopus 로고
    • Minimum sample size for developing a multivariable prediction model: Part i - Continuous outcomes
    • 10.1002/sim.7993 30347470
    • Riley RD, Snell KIE, Ensor J, et al. Minimum sample size for developing a multivariable prediction model: Part I - Continuous outcomes. Stat Med 2019;38:1262-75. 10.1002/sim.7993 30347470
    • (2019) Stat Med , vol.38 , pp. 1262-1275
    • Riley, R.D.1    Snell, K.I.E.2    Ensor, J.3
  • 17
    • 79960848483 scopus 로고    scopus 로고
    • Performance of logistic regression modeling: Beyond the number of events per variable, the role of data structure
    • 10.1016/j.jclinepi.2010.11.012 21411281
    • Courvoisier DS, Combescure C, Agoritsas T, Gayet-Ageron A, Perneger TV. Performance of logistic regression modeling: beyond the number of events per variable, the role of data structure. J Clin Epidemiol 2011;64:993-1000. 10.1016/j.jclinepi.2010.11.012 21411281
    • (2011) J Clin Epidemiol , vol.64 , pp. 993-1000
    • Courvoisier, D.S.1    Combescure, C.2    Agoritsas, T.3    Gayet-Ageron, A.4    Perneger, T.V.5
  • 18
    • 85059557306 scopus 로고    scopus 로고
    • Sample size considerations and predictive performance of multinomial logistic prediction models
    • 10.1002/sim.8063 30614028
    • de Jong VMT, Eijkemans MJC, van Calster B, et al. Sample size considerations and predictive performance of multinomial logistic prediction models. Stat Med 2019;38:1601-19. 10.1002/sim.8063 30614028
    • (2019) Stat Med , vol.38 , pp. 1601-1619
    • De Jong, V.M.T.1    Eijkemans, M.J.C.2    Van Calster, B.3
  • 19
    • 0029613841 scopus 로고
    • Importance of events per independent variable in proportional hazards regression analysis. II. Accuracy and precision of regression estimates
    • 10.1016/0895-4356(95)00048-8 8543964
    • Peduzzi P, Concato J, Feinstein AR, Holford TR. Importance of events per independent variable in proportional hazards regression analysis. II. Accuracy and precision of regression estimates. J Clin Epidemiol 1995;48:1503-10. 10.1016/0895-4356(95)00048-8 8543964
    • (1995) J Clin Epidemiol , vol.48 , pp. 1503-1510
    • Peduzzi, P.1    Concato, J.2    Feinstein, A.R.3    Holford, T.R.4
  • 20
    • 0030474271 scopus 로고    scopus 로고
    • A simulation study of the number of events per variable in logistic regression analysis
    • 10.1016/S0895-4356(96)00236-3 8970487
    • Peduzzi P, Concato J, Kemper E, Holford TR, Feinstein AR. A simulation study of the number of events per variable in logistic regression analysis. J Clin Epidemiol 1996;49:1373-9. 10.1016/S0895-4356(96)00236-3 8970487
    • (1996) J Clin Epidemiol , vol.49 , pp. 1373-1379
    • Peduzzi, P.1    Concato, J.2    Kemper, E.3    Holford, T.R.4    Feinstein, A.R.5
  • 21
    • 0029584326 scopus 로고
    • Importance of events per independent variable in proportional hazards analysis. I. Background, goals, and general strategy
    • 10.1016/0895-4356(95)00510-2 8543963
    • Concato J, Peduzzi P, Holford TR, Feinstein AR. Importance of events per independent variable in proportional hazards analysis. I. Background, goals, and general strategy. J Clin Epidemiol 1995;48:1495-501. 10.1016/0895-4356(95)00510-2 8543963
    • (1995) J Clin Epidemiol , vol.48 , pp. 1495-1501
    • Concato, J.1    Peduzzi, P.2    Holford, T.R.3    Feinstein, A.R.4
  • 22
    • 33847382959 scopus 로고    scopus 로고
    • Relaxing the rule of ten events per variable in logistic and Cox regression
    • 10.1093/aje/kwk052 17182981
    • Vittinghoff E, McCulloch CE. Relaxing the rule of ten events per variable in logistic and Cox regression. Am J Epidemiol 2007;165:710-8. 10.1093/aje/kwk052 17182981
    • (2007) Am J Epidemiol , vol.165 , pp. 710-718
    • Vittinghoff, E.1    McCulloch, C.E.2
  • 23
    • 84962074698 scopus 로고    scopus 로고
    • Adequate sample size for developing prediction models is not simply related to events per variable
    • 10.1016/j.jclinepi.2016.02.031 26964707
    • Ogundimu EO, Altman DG, Collins GS. Adequate sample size for developing prediction models is not simply related to events per variable. J Clin Epidemiol 2016;76:175-82. 10.1016/j.jclinepi.2016.02.031 26964707
    • (2016) J Clin Epidemiol , vol.76 , pp. 175-182
    • Ogundimu, E.O.1    Altman, D.G.2    Collins, G.S.3
  • 24
    • 85018749650 scopus 로고    scopus 로고
    • Events per variable (EPV) and the relative performance of different strategies for estimating the out-of-sample validity of logistic regression models
    • 10.1177/0962280214558972 25411322
    • Austin PC, Steyerberg EW. Events per variable (EPV) and the relative performance of different strategies for estimating the out-of-sample validity of logistic regression models. Stat Methods Med Res 2017;26:796-808. 10.1177/0962280214558972 25411322
    • (2017) Stat Methods Med Res , vol.26 , pp. 796-808
    • Austin, P.C.1    Steyerberg, E.W.2
  • 25
    • 84948711435 scopus 로고    scopus 로고
    • A simulation study of sample size demonstrated the importance of the number of events per variable to develop prediction models in clustered data
    • 10.1016/j.jclinepi.2015.02.002 25817942
    • Wynants L, Bouwmeester W, Moons KG, et al. A simulation study of sample size demonstrated the importance of the number of events per variable to develop prediction models in clustered data. J Clin Epidemiol 2015;68:1406-14. 10.1016/j.jclinepi.2015.02.002 25817942
    • (2015) J Clin Epidemiol , vol.68 , pp. 1406-1414
    • Wynants, L.1    Bouwmeester, W.2    Moons, K.G.3
  • 26
    • 84923873960 scopus 로고    scopus 로고
    • Modern modelling techniques are data hungry: A simulation study for predicting dichotomous endpoints
    • 10.1186/1471-2288-14-137 25532820
    • van der Ploeg T, Austin PC, Steyerberg EW. Modern modelling techniques are data hungry: a simulation study for predicting dichotomous endpoints. BMC Med Res Methodol 2014;14:137. 10.1186/1471-2288-14-137 25532820
    • (2014) BMC Med Res Methodol , vol.14 , pp. 137
    • Van Der-Ploeg, T.1    Austin, P.C.2    Steyerberg, E.W.3
  • 27
    • 84928929655 scopus 로고    scopus 로고
    • The number of subjects per variable required in linear regression analyses
    • 10.1016/j.jclinepi.2014.12.014 25704724
    • Austin PC, Steyerberg EW. The number of subjects per variable required in linear regression analyses. J Clin Epidemiol 2015;68:627-36. 10.1016/j.jclinepi.2014.12.014 25704724
    • (2015) J Clin Epidemiol , vol.68 , pp. 627-636
    • Austin, P.C.1    Steyerberg, E.W.2
  • 28
    • 0030069896 scopus 로고    scopus 로고
    • Multivariable prognostic models: Issues in developing models, evaluating assumptions and adequacy, and measuring and reducing errors
    • 10.1002/(SICI)1097-0258(19960229)15:4<361::AID-SIM168>3.0.CO;2-4 8668867
    • Harrell FEJr, Lee KL, Mark DB. Multivariable prognostic models: issues in developing models, evaluating assumptions and adequacy, and measuring and reducing errors. Stat Med 1996;15:361-87. 10.1002/(SICI)1097-0258(19960229)15:4<361::AID-SIM168>3.0.CO;2-4 8668867
    • (1996) Stat Med , vol.15 , pp. 361-387
    • Harrell, F.E.1    Lee, K.L.2    Mark, D.B.3
  • 29
    • 84942465542 scopus 로고    scopus 로고
    • How to develop a more accurate risk prediction model when there are few events
    • 10.1136/bmj.h3868 26264962
    • Pavlou M, Ambler G, Seaman SR, et al. How to develop a more accurate risk prediction model when there are few events. BMJ 2015;351:h3868. 10.1136/bmj.h3868 26264962
    • (2015) BMJ , vol.351 , pp. h3868
    • Pavlou, M.1    Ambler, G.2    Seaman, S.R.3
  • 30
    • 0035530906 scopus 로고    scopus 로고
    • Shrinkage and penalized likelihood as methods to improve predictive accuracy
    • 1111/1467-9574.00154
    • Van Houwelingen JC. Shrinkage and penalized likelihood as methods to improve predictive accuracy. Stat Neerl 2001;55:17-3410.1111/1467-9574.00154.
    • (2001) Stat Neerl , vol.55 , pp. 17-3410
    • Van Houwelingen, J.C.1
  • 31
    • 0025151933 scopus 로고
    • Predictive value of statistical models
    • 10.1002/sim.4780091109 2277880
    • Van Houwelingen JC, Le Cessie S. Predictive value of statistical models. Stat Med 1990;9:1303-25. 10.1002/sim.4780091109 2277880
    • (1990) Stat Med , vol.9 , pp. 1303-1325
    • Van Houwelingen, J.C.1    Le Cessie, S.2
  • 32
    • 0001573594 scopus 로고
    • Regression, prediction and shrinkage
    • 1111/j.2517-6161.1983.tb01258.x
    • Copas JB. Regression, Prediction and Shrinkage. J R Stat Soc B 1983;45:311-5410.1111/j.2517-6161.1983.tb01258.x.
    • (1983) J R Stat Soc B , vol.45 , pp. 311-5410
    • Copas, J.B.1
  • 33
    • 0001287271 scopus 로고    scopus 로고
    • Regression shrinkage and selection via the lasso
    • 1111/j.2517-6161.1996.tb02080.x
    • Tibshirani R. Regression shrinkage and selection via the lasso. J R Stat Soc B 1996;58:267-8810.1111/j.2517-6161.1996.tb02080.x.
    • (1996) J R Stat Soc B , vol.58 , pp. 267-8810
    • Tibshirani, R.1
  • 34
    • 0031160755 scopus 로고    scopus 로고
    • Using regression models for prediction: Shrinkage and regression to the mean
    • 10.1177/096228029700600206 9261914
    • Copas JB. Using regression models for prediction: shrinkage and regression to the mean. Stat Methods Med Res 1997;6:167-83. 10.1177/096228029700600206 9261914
    • (1997) Stat Methods Med Res , vol.6 , pp. 167-183
    • Copas, J.B.1
  • 36
    • 85009129532 scopus 로고    scopus 로고
    • A guide to systematic review and meta-analysis of prediction model performance
    • 10.1136/bmj.i6460 28057641
    • Debray TP, Damen JA, Snell KI, et al. A guide to systematic review and meta-analysis of prediction model performance. BMJ 2017;356:i6460. 10.1136/bmj.i6460 28057641
    • (2017) BMJ , vol.356 , pp. i6460
    • Debray, T.P.1    Damen, J.A.2    Snell, K.I.3
  • 37
    • 85055267920 scopus 로고    scopus 로고
    • Tufts PACE clinical predictive model registry: Update 1990 through 2015
    • 10.1186/s41512-017-0021-2 31093549
    • Wessler BS, Paulus J, Lundquist CM, et al. Tufts PACE Clinical Predictive Model Registry: update 1990 through 2015. Diagn Progn Res 2017;1:20. 10.1186/s41512-017-0021-2 31093549
    • (2017) Diagn Progn Res , vol.1 , pp. 20
    • Wessler, B.S.1    Paulus, J.2    Lundquist, C.M.3
  • 38
    • 77956887506 scopus 로고
    • A note on a general definition of the coefficient of determination
    • 10.1093/biomet/78.3.691
    • Nagelkerke N. A note on a general definition of the coefficient of determination. Biometrika 1991;78:691-2. 10.1093/biomet/78.3.691.
    • (1991) Biometrika , vol.78 , pp. 691-692
    • Nagelkerke, N.1
  • 39
    • 0002297105 scopus 로고
    • Conditional logit analysis of qualitative choice behavior
    • In: Zarembka P, ed. Academic Press
    • McFadden D. Conditional logit analysis of qualitative choice behavior. In: Zarembka P, ed. Frontiers in Econometrics New York. Academic Press, 1974: 104-42.
    • (1974) Frontiers in Econometrics New York , pp. 104-142
    • McFadden, D.1
  • 40
    • 13644250447 scopus 로고    scopus 로고
    • Explained randomness in proportional hazards models
    • 10.1002/sim.1946 15532086
    • O'Quigley J, Xu R, Stare J. Explained randomness in proportional hazards models. Stat Med 2005;24:479-89. 10.1002/sim.1946 15532086
    • (2005) Stat Med , vol.24 , pp. 479-489
    • O'Quigley, J.1    Xu, R.2    Stare, J.3
  • 41
    • 33646515606 scopus 로고    scopus 로고
    • Explained variation for survival models
    • 1177/1536867X0600600105
    • Royston P. Explained variation for survival models. Stata J 2006;6:83-9610.1177/1536867X0600600105.
    • (2006) Stata J , vol.6 , pp. 83-9610
    • Royston, P.1
  • 42
    • 1442351098 scopus 로고    scopus 로고
    • A new measure of prognostic separation in survival data
    • 10.1002/sim.1621 14981672
    • Royston P, Sauerbrei W. A new measure of prognostic separation in survival data. Stat Med 2004;23:723-48. 10.1002/sim.1621 14981672
    • (2004) Stat Med , vol.23 , pp. 723-748
    • Royston, P.1    Sauerbrei, W.2
  • 43
    • 79955409868 scopus 로고    scopus 로고
    • Clinical risk prediction for pre-eclampsia in nulliparous women: Development of model in international prospective cohort
    • 10.1136/bmj.d1875 21474517
    • North RA, McCowan LM, Dekker GA, et al. Clinical risk prediction for pre-eclampsia in nulliparous women: development of model in international prospective cohort. BMJ 2011;342:d1875. 10.1136/bmj.d1875 21474517
    • (2011) BMJ , vol.342 , pp. d1875
    • North, R.A.1    McCowan, L.M.2    Dekker, G.A.3
  • 44
    • 85060861394 scopus 로고    scopus 로고
    • A guide to systematic review and meta-analysis of prognostic factor studies
    • 10.1136/bmj.k4597 30700442
    • Riley RD, Moons KGM, Snell KIE, et al. A guide to systematic review and meta-analysis of prognostic factor studies. BMJ 2019;364:k4597. 10.1136/bmj.k4597 30700442
    • (2019) BMJ , vol.364 , pp. k4597
    • Riley, R.D.1    Moons, K.G.M.2    Snell, K.I.E.3
  • 45
    • 84971280709 scopus 로고    scopus 로고
    • Systematic review of prognostic models for recurrent venous thromboembolism (VTE) post-treatment of first unprovoked VTE
    • 10.1136/bmjopen-2016-011190 27154483
    • Ensor J, Riley RD, Moore D, Snell KI, Bayliss S, Fitzmaurice D. Systematic review of prognostic models for recurrent venous thromboembolism (VTE) post-treatment of first unprovoked VTE. BMJ Open 2016;6:e011190. 10.1136/bmjopen-2016-011190 27154483
    • (2016) BMJ Open , vol.6 , pp. e011190
    • Ensor, J.1    Riley, R.D.2    Moore, D.3    Snell, K.I.4    Bayliss, S.5    Fitzmaurice, D.6
  • 46
    • 84958543113 scopus 로고    scopus 로고
    • Prediction of risk of recurrence of venous thromboembolism following treatment for a first unprovoked venous thromboembolism: Systematic review, prognostic model and clinical decision rule, and economic evaluation
    • 1-190. 10.3310/hta20120 26879848
    • Ensor J, Riley RD, Jowett S, et al. PIT-STOP collaborative group. Prediction of risk of recurrence of venous thromboembolism following treatment for a first unprovoked venous thromboembolism: systematic review, prognostic model and clinical decision rule, and economic evaluation. Health Technol Assess 2016;20:i-xxxiii, 1-190. 10.3310/hta20120 26879848
    • (2016) Health Technol Assess , vol.20 , pp. i-xxxiii
    • Ensor, J.1    Riley, R.D.2    Jowett, S.3
  • 47
    • 85069926150 scopus 로고    scopus 로고
    • Development and validation of a prediction model for fat mass in children and adolescents: Meta-analysis using individual participant data
    • 10.1136/bmj.l4293 31340931
    • Hudda MT, Fewtrell MS, Haroun D, et al. Development and validation of a prediction model for fat mass in children and adolescents: meta-analysis using individual participant data. BMJ 2019;366:l4293. 10.1136/bmj.l4293 31340931
    • (2019) BMJ , vol.366 , pp. l4293
    • Hudda, M.T.1    Fewtrell, M.S.2    Haroun, D.3
  • 48
    • 41549115181 scopus 로고    scopus 로고
    • Sample size planning for statistical power and accuracy in parameter estimation
    • 10.1146/annurev.psych.59.103006.093735 17937603
    • Maxwell SE, Kelley K, Rausch JR. Sample size planning for statistical power and accuracy in parameter estimation. Annu Rev Psychol 2008;59:537-63. 10.1146/annurev.psych.59.103006.093735 17937603
    • (2008) Annu Rev Psychol , vol.59 , pp. 537-563
    • Maxwell, S.E.1    Kelley, K.2    Rausch, J.R.3
  • 49
    • 0043074894 scopus 로고    scopus 로고
    • An overview of variance inflation factors for sample-size calculation
    • 10.1177/0163278703255230 12971199
    • Hsieh FY, Lavori PW, Cohen HJ, Feussner JR. An overview of variance inflation factors for sample-size calculation. Eval Health Prof 2003;26:239-57. 10.1177/0163278703255230 12971199
    • (2003) Eval Health Prof , vol.26 , pp. 239-257
    • Hsieh, F.Y.1    Lavori, P.W.2    Cohen, H.J.3    Feussner, J.R.4
  • 50
    • 0034528314 scopus 로고    scopus 로고
    • Sample-size calculations for the cox proportional hazards regression model with nonbinary covariates
    • 10.1016/S0197-2456(00)00104-5 11146149
    • Hsieh FY, Lavori PW. Sample-size calculations for the Cox proportional hazards regression model with nonbinary covariates. Control Clin Trials 2000;21:552-60. 10.1016/S0197-2456(00)00104-5 11146149
    • (2000) Control Clin Trials , vol.21 , pp. 552-560
    • Hsieh, F.Y.1    Lavori, P.W.2
  • 51
    • 0034728370 scopus 로고    scopus 로고
    • Sample size considerations for the evaluation of prognostic factors in survival analysis
    • 10.1002/(SICI)1097-0258(20000229)19:4<441::AID-SIM349>3.0.CO;2-N 10694729
    • Schmoor C, Sauerbrei W, Schumacher M. Sample size considerations for the evaluation of prognostic factors in survival analysis. Stat Med 2000;19:441-52. 10.1002/(SICI)1097-0258(20000229)19:4<441::AID-SIM349>3.0.CO;2-N 10694729
    • (2000) Stat Med , vol.19 , pp. 441-452
    • Schmoor, C.1    Sauerbrei, W.2    Schumacher, M.3
  • 52
    • 0008679660 scopus 로고    scopus 로고
    • Increasing statistical power without increasing sample size
    • 1037/0003-066X.55.8.963
    • McClelland GH. Increasing statistical power without increasing sample size. Am Psychol 2000;55:963-410.1037/0003-066X.55.8.963.
    • (2000) Am Psychol , vol.55 , pp. 410-963
    • McClelland, G.H.1
  • 53
    • 0032581454 scopus 로고    scopus 로고
    • A simple method of sample size calculation for linear and logistic regression
    • 10.1002/(SICI)1097-0258(19980730)17:14<1623::AID-SIM871>3.0.CO;2-S 9699234
    • Hsieh FY, Bloch DA, Larsen MD. A simple method of sample size calculation for linear and logistic regression. Stat Med 1998;17:1623-34. 10.1002/(SICI)1097-0258(19980730)17:14<1623::AID-SIM871>3.0.CO;2-S 9699234
    • (1998) Stat Med , vol.17 , pp. 1623-1634
    • Hsieh, F.Y.1    Bloch, D.A.2    Larsen, M.D.3
  • 54
    • 0043109420 scopus 로고    scopus 로고
    • Sample size for multiple regression: Obtaining regression coefficients that are accurate, not simply significant
    • 10.1037/1082-989X.8.3.305 14596493
    • Kelley K, Maxwell SE. Sample size for multiple regression: obtaining regression coefficients that are accurate, not simply significant. Psychol Methods 2003;8:305-21. 10.1037/1082-989X.8.3.305 14596493
    • (2003) Psychol Methods , vol.8 , pp. 305-321
    • Kelley, K.1    Maxwell, S.E.2
  • 55
    • 37349102359 scopus 로고    scopus 로고
    • Sample size planning for the coefficient of variation from the accuracy in parameter estimation approach
    • 10.3758/BF03192966 18183888
    • Kelley K. Sample size planning for the coefficient of variation from the accuracy in parameter estimation approach. Behav Res Methods 2007;39:755-66. 10.3758/BF03192966 18183888
    • (2007) Behav Res Methods , vol.39 , pp. 755-766
    • Kelley, K.1
  • 56
    • 84964857173 scopus 로고    scopus 로고
    • Sparse data bias: A problem hiding in plain sight
    • 10.1136/bmj.i1981 27121591
    • Greenland S, Mansournia MA, Altman DG. Sparse data bias: a problem hiding in plain sight. BMJ 2016;352:i1981. 10.1136/bmj.i1981 27121591
    • (2016) BMJ , vol.352 , pp. i1981
    • Greenland, S.1    Mansournia, M.A.2    Altman, D.G.3
  • 57
    • 84976645528 scopus 로고    scopus 로고
    • External validation of clinical prediction models using big datasets from e-health records or IPD meta-analysis: Opportunities and challenges
    • 10.1136/bmj.i3140 27334381
    • Riley RD, Ensor J, Snell KI, et al. External validation of clinical prediction models using big datasets from e-health records or IPD meta-analysis: opportunities and challenges. BMJ 2016;353:i3140. 10.1136/bmj.i3140 27334381
    • (2016) BMJ , vol.353 , pp. i3140
    • Riley, R.D.1    Ensor, J.2    Snell, K.I.3
  • 58
    • 84946072388 scopus 로고    scopus 로고
    • Individual participant data (IPD) meta-analyses of diagnostic and prognostic modeling studies: Guidance on their use
    • 10.1371/journal.pmed.1001886 26461078
    • Debray TPA, Riley RD, Rovers MM, Reitsma JB, Moons KGCochrane IPD Meta-analysis Methods group. Individual participant data (IPD) meta-analyses of diagnostic and prognostic modeling studies: guidance on their use. PLoS Med 2015;12:e1001886. 10.1371/journal.pmed.1001886 26461078
    • (2015) PLoS Med , vol.12
    • Debray, T.P.A.1    Riley, R.D.2    Rovers, M.M.3    Reitsma, J.B.4    Moons, K.G.5
  • 59
    • 16244401458 scopus 로고    scopus 로고
    • Regularization and variable selection via the elastic net
    • 1111/j.1467-9868.2005.00503.x
    • Zou H, Hastie T. Regularization and Variable Selection via the Elastic Net. J R Stat Soc Series B Stat Methodol 2005;67:301-2010.1111/j.1467-9868.2005.00503.x.
    • (2005) J R Stat Soc Series B Stat Methodol , vol.67 , pp. 301-2010
    • Zou, H.1    Hastie, T.2
  • 60
    • 85039762667 scopus 로고    scopus 로고
    • Variable selection - A review and recommendations for the practicing statistician
    • 10.1002/bimj.201700067 29292533
    • Heinze G, Wallisch C, Dunkler D. Variable selection - A review and recommendations for the practicing statistician. Biom J 2018;60:431-49. 10.1002/bimj.201700067 29292533
    • (2018) Biom J , vol.60 , pp. 431-449
    • Heinze, G.1    Wallisch, C.2    Dunkler, D.3
  • 61
    • 0027081755 scopus 로고
    • A bootstrap resampling procedure for model building: Application to the Cox regression model
    • 10.1002/sim.4780111607 1293671
    • Sauerbrei W, Schumacher M. A bootstrap resampling procedure for model building: application to the Cox regression model. Stat Med 1992;11:2093-109. 10.1002/sim.4780111607 1293671
    • (1992) Stat Med , vol.11 , pp. 2093-2109
    • Sauerbrei, W.1    Schumacher, M.2
  • 62
    • 84855700441 scopus 로고    scopus 로고
    • Stability investigations of multivariable regression models derived from low- And high-dimensional data
    • 10.1080/10543406.2011.629890 22023687
    • Sauerbrei W, Boulesteix AL, Binder H. Stability investigations of multivariable regression models derived from low- and high-dimensional data. J Biopharm Stat 2011;21:1206-31. 10.1080/10543406.2011.629890 22023687
    • (2011) J Biopharm Stat , vol.21 , pp. 1206-1231
    • Sauerbrei, W.1    Boulesteix, A.L.2    Binder, H.3
  • 63
    • 0037470273 scopus 로고    scopus 로고
    • Stability of multivariable fractional polynomial models with selection of variables and transformations: A bootstrap investigation
    • 10.1002/sim.1310 12590419
    • Royston P, Sauerbrei W. Stability of multivariable fractional polynomial models with selection of variables and transformations: a bootstrap investigation. Stat Med 2003;22:639-59. 10.1002/sim.1310 12590419
    • (2003) Stat Med , vol.22 , pp. 639-659
    • Royston, P.1    Sauerbrei, W.2
  • 65
    • 84903607237 scopus 로고    scopus 로고
    • Risk prediction with machine learning and regression methods
    • 10.1002/bimj.201300297 24615859
    • Steyerberg EW, van der Ploeg T, Van Calster B. Risk prediction with machine learning and regression methods. Biom J 2014;56:601-6. 10.1002/bimj.201300297 24615859
    • (2014) Biom J , vol.56 , pp. 601-606
    • Steyerberg, E.W.1    Van Der-Ploeg, T.2    Van Calster, B.3
  • 66
    • 4344696163 scopus 로고    scopus 로고
    • Validation and updating of predictive logistic regression models: A study on sample size and shrinkage
    • 10.1002/sim.1844 15287085
    • Steyerberg EW, Borsboom GJ, van Houwelingen HC, Eijkemans MJ, Habbema JD. Validation and updating of predictive logistic regression models: a study on sample size and shrinkage. Stat Med 2004;23:2567-86. 10.1002/sim.1844 15287085
    • (2004) Stat Med , vol.23 , pp. 2567-2586
    • Steyerberg, E.W.1    Borsboom, G.J.2    Van Houwelingen, H.C.3    Eijkemans, M.J.4    Habbema, J.D.5
  • 67
    • 85005943283 scopus 로고    scopus 로고
    • A closed testing procedure to select an appropriate method for updating prediction models
    • 10.1002/sim.7179 27891652
    • Vergouwe Y, Nieboer D, Oostenbrink R, et al. A closed testing procedure to select an appropriate method for updating prediction models. Stat Med 2017;36:4529-39. 10.1002/sim.7179 27891652
    • (2017) Stat Med , vol.36 , pp. 4529-4539
    • Vergouwe, Y.1    Nieboer, D.2    Oostenbrink, R.3
  • 68
    • 85059267182 scopus 로고    scopus 로고
    • PROBAST: A tool to assess the risk of bias and applicability of prediction model studies
    • 10.7326/M18-1376 30596875
    • Wolff RF, Moons KGM, Riley RD, et al. PROBAST Group†. PROBAST: A Tool to Assess the Risk of Bias and Applicability of Prediction Model Studies. Ann Intern Med 2019;170:51-8. 10.7326/M18-1376 30596875
    • (2019) Ann Intern Med , vol.170 , pp. 51-58
    • Wolff, R.F.1    Moons, K.G.M.2    Riley, R.D.3
  • 69
    • 85059273231 scopus 로고    scopus 로고
    • PROBAST: A tool to assess risk of bias and applicability of prediction model studies: Explanation and elaboration
    • 10.7326/M18-1377 30596876
    • Moons KGM, Wolff RF, Riley RD, et al. PROBAST: A Tool to Assess Risk of Bias and Applicability of Prediction Model Studies: Explanation and Elaboration. Ann Intern Med 2019;170:W1-33. 10.7326/M18-1377 30596876
    • (2019) Ann Intern Med , vol.170 , pp. W1-W33
    • Moons, K.G.M.1    Wolff, R.F.2    Riley, R.D.3
  • 70
    • 0034906866 scopus 로고    scopus 로고
    • Internal validation of predictive models: Efficiency of some procedures for logistic regression analysis
    • 10.1016/S0895-4356(01)00341-9 11470385
    • Steyerberg EW, Harrell FEJJr, Borsboom GJ, Eijkemans MJ, Vergouwe Y, Habbema JD. Internal validation of predictive models: efficiency of some procedures for logistic regression analysis. J Clin Epidemiol 2001;54:774-81. 10.1016/S0895-4356(01)00341-9 11470385
    • (2001) J Clin Epidemiol , vol.54 , pp. 774-781
    • Steyerberg, E.W.1    Harrell, F.E.J.2    Borsboom, G.J.3    Eijkemans, M.J.4    Vergouwe, Y.5    Habbema, J.D.6
  • 71
    • 84952631019 scopus 로고    scopus 로고
    • Prediction models need appropriate internal, internal-external, and external validation
    • 10.1016/j.jclinepi.2015.04.005 25981519
    • Steyerberg EW, Harrell FEJr. Prediction models need appropriate internal, internal-external, and external validation. J Clin Epidemiol 2016;69:245-7. 10.1016/j.jclinepi.2015.04.005 25981519
    • (2016) J Clin Epidemiol , vol.69 , pp. 245-247
    • Steyerberg, E.W.1    Harrell, F.E.2
  • 72
    • 84864822196 scopus 로고    scopus 로고
    • Incorporating published univariable associations in diagnostic and prognostic modeling
    • 10.1186/1471-2288-12-121 22883206
    • Debray TP, Koffijberg H, Lu D, Vergouwe Y, Steyerberg EW, Moons KG. Incorporating published univariable associations in diagnostic and prognostic modeling. BMC Med Res Methodol 2012;12:121. 10.1186/1471-2288-12-121 22883206
    • (2012) BMC Med Res Methodol , vol.12 , pp. 121
    • Debray, T.P.1    Koffijberg, H.2    Lu, D.3    Vergouwe, Y.4    Steyerberg, E.W.5    Moons, K.G.6
  • 73
    • 84922392234 scopus 로고    scopus 로고
    • Meta-analysis and aggregation of multiple published prediction models
    • 10.1002/sim.6080 24752993
    • Debray TP, Koffijberg H, Nieboer D, Vergouwe Y, Steyerberg EW, Moons KG. Meta-analysis and aggregation of multiple published prediction models. Stat Med 2014;33:2341-62. 10.1002/sim.6080 24752993
    • (2014) Stat Med , vol.33 , pp. 2341-2362
    • Debray, T.P.1    Koffijberg, H.2    Nieboer, D.3    Vergouwe, Y.4    Steyerberg, E.W.5    Moons, K.G.6
  • 74
    • 84866440887 scopus 로고    scopus 로고
    • Aggregating published prediction models with individual participant data: A comparison of different approaches
    • 10.1002/sim.5412 22733546
    • Debray TP, Koffijberg H, Vergouwe Y, Moons KG, Steyerberg EW. Aggregating published prediction models with individual participant data: a comparison of different approaches. Stat Med 2012;31:2697-712. 10.1002/sim.5412 22733546
    • (2012) Stat Med , vol.31 , pp. 2697-2712
    • Debray, T.P.1    Koffijberg, H.2    Vergouwe, Y.3    Moons, K.G.4    Steyerberg, E.W.5
  • 75
    • 84954405416 scopus 로고    scopus 로고
    • Sample size considerations for the external validation of a multivariable prognostic model: A resampling study
    • 10.1002/sim.6787 26553135
    • Collins GS, Ogundimu EO, Altman DG. Sample size considerations for the external validation of a multivariable prognostic model: a resampling study. Stat Med 2016;35:214-26. 10.1002/sim.6787 26553135
    • (2016) Stat Med , vol.35 , pp. 214-226
    • Collins, G.S.1    Ogundimu, E.O.2    Altman, D.G.3
  • 76
    • 84957076656 scopus 로고    scopus 로고
    • A calibration hierarchy for risk models was defined: From utopia to empirical data
    • 10.1016/j.jclinepi.2015.12.005 26772608
    • Van Calster B, Nieboer D, Vergouwe Y, De Cock B, Pencina MJ, Steyerberg EW. A calibration hierarchy for risk models was defined: from utopia to empirical data. J Clin Epidemiol 2016;74:167-76. 10.1016/j.jclinepi.2015.12.005 26772608
    • (2016) J Clin Epidemiol , vol.74 , pp. 167-176
    • Van Calster, B.1    Nieboer, D.2    Vergouwe, Y.3    De Cock, B.4    Pencina, M.J.5    Steyerberg, E.W.6
  • 77
    • 84944065233 scopus 로고    scopus 로고
    • Discrimination-based sample size calculations for multivariable prognostic models for time-to-event data
    • 10.1186/s12874-015-0078-y 26459415
    • Jinks RC, Royston P, Parmar MK. Discrimination-based sample size calculations for multivariable prognostic models for time-to-event data. BMC Med Res Methodol 2015;15:82. 10.1186/s12874-015-0078-y 26459415
    • (2015) BMC Med Res Methodol , vol.15 , pp. 82
    • Jinks, R.C.1    Royston, P.2    Parmar, M.K.3
  • 78
    • 17444420853 scopus 로고    scopus 로고
    • Substantial effective sample sizes were required for external validation studies of predictive logistic regression models
    • 10.1016/j.jclinepi.2004.06.017 15845334
    • Vergouwe Y, Steyerberg EW, Eijkemans MJ, Habbema JD. Substantial effective sample sizes were required for external validation studies of predictive logistic regression models. J Clin Epidemiol 2005;58:475-83. 10.1016/j.jclinepi.2004.06.017 15845334
    • (2005) J Clin Epidemiol , vol.58 , pp. 475-483
    • Vergouwe, Y.1    Steyerberg, E.W.2    Eijkemans, M.J.3    Habbema, J.D.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.