메뉴 건너뛰기




Volumn 76, Issue , 2016, Pages 175-182

Adequate sample size for developing prediction models is not simply related to events per variable

Author keywords

Cox model; Events per variable; External validation; Predictive modeling; Resampling study; Sample size

Indexed keywords

ACCURACY; ADULT; ARTICLE; CLINICAL PRACTICE; EVENTS PER VARIABLE; EXTERNAL VALIDITY; FEMALE; GENERAL PRACTICE; HEURISTICS; HUMAN; MAJOR CLINICAL STUDY; MALE; MEDICAL RECORD; MIDDLE AGED; MONTE CARLO METHOD; PREDICTION; PREVALENCE; PRIORITY JOURNAL; PROPORTIONAL HAZARDS MODEL; SAMPLE SIZE; STATISTICAL MODEL; BAYES THEOREM; FORECASTING; MEDICAL RESEARCH; METHODOLOGY; PATIENT SELECTION; PROCEDURES; REGRESSION ANALYSIS; STATISTICS AND NUMERICAL DATA;

EID: 84962074698     PISSN: 08954356     EISSN: 18785921     Source Type: Journal    
DOI: 10.1016/j.jclinepi.2016.02.031     Document Type: Article
Times cited : (293)

References (18)
  • 1
    • 0029584326 scopus 로고
    • The importance of events per independent variable in proportional hazards regression analysis: I. Background, goals and general strategy
    • [1] Concato, J., Peduzzi, P., Holford, T., Feinstein, A., The importance of events per independent variable in proportional hazards regression analysis: I. Background, goals and general strategy. J Clin Epidemiol 48 (1995), 1495–1501.
    • (1995) J Clin Epidemiol , vol.48 , pp. 1495-1501
    • Concato, J.1    Peduzzi, P.2    Holford, T.3    Feinstein, A.4
  • 2
    • 0021857146 scopus 로고
    • Regression models for prognostic prediction: advantages, problems, and suggested solutions
    • [2] Harrell, F., Lee, K., Matchar, D., Reichert, T., Regression models for prognostic prediction: advantages, problems, and suggested solutions. Cancer Treat Rep 69 (1985), 1071–1077.
    • (1985) Cancer Treat Rep , vol.69 , pp. 1071-1077
    • Harrell, F.1    Lee, K.2    Matchar, D.3    Reichert, T.4
  • 3
    • 0029613841 scopus 로고
    • The importance of events per independent variable in proportional hazards regression analysis: II. Accuracy and precision of regression estimates
    • [3] Peduzzi, P., Concato, J., Feinstein, A., Holford, T., The importance of events per independent variable in proportional hazards regression analysis: II. Accuracy and precision of regression estimates. J Clin Epidemiol 48 (1995), 1503–1510.
    • (1995) J Clin Epidemiol , vol.48 , pp. 1503-1510
    • Peduzzi, P.1    Concato, J.2    Feinstein, A.3    Holford, T.4
  • 4
    • 0030474271 scopus 로고    scopus 로고
    • A simulation study on the number of events per variable in logistic regression analysis
    • [4] Peduzzi, P., Concato, J., Kemper, E., Holford, T.R., Feinstein, A., A simulation study on the number of events per variable in logistic regression analysis. J Clin Epidemiol 49 (1996), 1373–1379.
    • (1996) J Clin Epidemiol , vol.49 , pp. 1373-1379
    • Peduzzi, P.1    Concato, J.2    Kemper, E.3    Holford, T.R.4    Feinstein, A.5
  • 5
    • 33847382959 scopus 로고    scopus 로고
    • Relaxing the rule of ten events per variable in logistic and Cox regression
    • [5] Vittinghoff, E., McCulloch, C.E., Relaxing the rule of ten events per variable in logistic and Cox regression. Am J Epidemiol 165 (2007), 710–718.
    • (2007) Am J Epidemiol , vol.165 , pp. 710-718
    • Vittinghoff, E.1    McCulloch, C.E.2
  • 6
    • 80054995011 scopus 로고    scopus 로고
    • Performance of logistic regression modeling: beyond the number of events per variable, the role of data structure
    • [6] Courvoisier, D.S., Combescure, C., Agoritsas, T., Gayet-Ageron, A., Perneger, T.V., Performance of logistic regression modeling: beyond the number of events per variable, the role of data structure. J Clin Epidemiol 64 (2011), 993–1000.
    • (2011) J Clin Epidemiol , vol.64 , pp. 993-1000
    • Courvoisier, D.S.1    Combescure, C.2    Agoritsas, T.3    Gayet-Ageron, A.4    Perneger, T.V.5
  • 7
    • 80054968741 scopus 로고    scopus 로고
    • Logistic regression modeling and the number of events per variable: selection bias dominates
    • [7] Steyerberg, E.W., Schemper, M., Harrell, F.E., Logistic regression modeling and the number of events per variable: selection bias dominates. J Clin Epidemiol 64 (2011), 1463–1469.
    • (2011) J Clin Epidemiol , vol.64 , pp. 1463-1469
    • Steyerberg, E.W.1    Schemper, M.2    Harrell, F.E.3
  • 8
    • 0033213971 scopus 로고    scopus 로고
    • Stepwise selection in small data sets: a simulation study of bias in logistic regression analysis
    • [8] Steyerberg, E.W., Eijkemans, M.J.C., Habbema, J.F., Stepwise selection in small data sets: a simulation study of bias in logistic regression analysis. J Clin Epidemiol 52 (1999), 935–942.
    • (1999) J Clin Epidemiol , vol.52 , pp. 935-942
    • Steyerberg, E.W.1    Eijkemans, M.J.C.2    Habbema, J.F.3
  • 9
    • 0002662712 scopus 로고
    • On the existence of maximum likelihood estimates in logistic regression
    • [9] Albert, A., Anderson, J.A., On the existence of maximum likelihood estimates in logistic regression. Biometrika 71 (1984), 1–10.
    • (1984) Biometrika , vol.71 , pp. 1-10
    • Albert, A.1    Anderson, J.A.2
  • 10
    • 0037199788 scopus 로고    scopus 로고
    • A solution to the problem of separation in logistic regression
    • [10] Heinze, G., Schemper, M., A solution to the problem of separation in logistic regression. Stat Med 21 (2002), 2409–2419.
    • (2002) Stat Med , vol.21 , pp. 2409-2419
    • Heinze, G.1    Schemper, M.2
  • 11
    • 0035099124 scopus 로고    scopus 로고
    • A solution to problem of monotone likelihood in Cox regression
    • [11] Heinze, G., Schempe, M., A solution to problem of monotone likelihood in Cox regression. Biometrics 57 (2001), 114–119.
    • (2001) Biometrics , vol.57 , pp. 114-119
    • Heinze, G.1    Schempe, M.2
  • 12
    • 0002178053 scopus 로고
    • Bias reduction of maximum likelihood estimates
    • [12] Firth, D., Bias reduction of maximum likelihood estimates. Biometrika 80 (1993), 27–38.
    • (1993) Biometrika , vol.80 , pp. 27-38
    • Firth, D.1
  • 13
    • 33845891920 scopus 로고    scopus 로고
    • The design of simulation studies in medical statistics
    • [13] Burton, A., Altman, D.G., Royston, P., Holder, R.L., The design of simulation studies in medical statistics. Stat Med 25 (2006), 4279–4292.
    • (2006) Stat Med , vol.25 , pp. 4279-4292
    • Burton, A.1    Altman, D.G.2    Royston, P.3    Holder, R.L.4
  • 14
    • 1442351098 scopus 로고    scopus 로고
    • A new measure of prognostic separation in survival data
    • [14] Royston, P., Sauerbrei, W., A new measure of prognostic separation in survival data. Stat Med 23 (2004), 723–748.
    • (2004) Stat Med , vol.23 , pp. 723-748
    • Royston, P.1    Sauerbrei, W.2
  • 15
    • 13644250447 scopus 로고    scopus 로고
    • Explained randomness in proportional hazards models
    • [15] O'Quigley, J., Xu, R., Stare, J., Explained randomness in proportional hazards models. Stat Med 24 (2005), 479–489.
    • (2005) Stat Med , vol.24 , pp. 479-489
    • O'Quigley, J.1    Xu, R.2    Stare, J.3
  • 16
    • 84861193203 scopus 로고    scopus 로고
    • An evaluation of penalised survival methods for developing prognostic models with rare events
    • [16] Ambler, G., Seaman, S., Omar, R.Z., An evaluation of penalised survival methods for developing prognostic models with rare events. Stat Med 31 (2012), 1150–1161.
    • (2012) Stat Med , vol.31 , pp. 1150-1161
    • Ambler, G.1    Seaman, S.2    Omar, R.Z.3
  • 17
    • 84878248081 scopus 로고    scopus 로고
    • Shrinkage methods enhanced the accuracy of parameter estimation using Cox models with small number of events
    • [17] Lin, I.F., Chang, W.P., Liao, Y.N., Shrinkage methods enhanced the accuracy of parameter estimation using Cox models with small number of events. J Clin Epidemiol 66 (2013), 743–751.
    • (2013) J Clin Epidemiol , vol.66 , pp. 743-751
    • Lin, I.F.1    Chang, W.P.2    Liao, Y.N.3
  • 18
    • 84870028341 scopus 로고    scopus 로고
    • Letter to the editor: a comparative study of the bias corrected estimates in logistic regression
    • [18] Heinze, G., Letter to the editor: a comparative study of the bias corrected estimates in logistic regression. Stat Methods Med Res 21 (2012), 660–661.
    • (2012) Stat Methods Med Res , vol.21 , pp. 660-661
    • Heinze, G.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.